
MSIAM Toward High Performance Computing INP-UGA

Practical Session 2 : Foster Design

Objective

The objective of this practical session is to apply Foster design methodology to some specific problems.

1 – Maximum value
Suppose you are given a two-dimensional array of dimensions M and N containing real numbers. We make the

assumption that M and N are much larger than the number of available processing units p. We also assume that
the function max(a, b) is available.

Question 1

Discuss the first step in Foster methodology. Indicate how you make you choices. You may use diagrams to
explain the reasoning.

2 – Matrix vector product
We consider the matrix-vector multiplication y = Ax, where A ∈ Rn×n, x ∈ Rn and y ∈ Rn. This product is to

be computed on a system with p processing units. In the first stage, we do no consider the topology of the network.
The matrix A has been partitioned column-block-wise in blocks Ai of size n× (n/p) and vector x in blocks Xi of

size n/p respectively,

A =
(
A1, A2, · · · , Ap

)
and

x =


X1
X2
...

Xp


Question 2

Discuss the first step in Foster methodology. Indicate how you make you choices. You may use diagrams to
explain the reasoning.

3 – Matrix product
We consider the following algorithm for the product of two matrices

Algorithme 1 : Matrices product
Data : Matrices A and B
Result : Matrix C

1 for i← 1 to n do
2 for j ← 1 to p do
3 sum = 0
4 for k ← 1 to m do
5 sum = AikBkj

6 end
7 Cij = sum
8 end
9 end

1 / 2



MSIAM Toward High Performance Computing INP-UGA

Question 3

Design an algorithm that enable the computation of matrices product in parallel.

4 – Maximum subarray
In order to find the maximum subarray, that is find the subarray of a matrix with the maximum sum, we can use

Kadane’s algorithm algorithm
Algorithme 2 : 1D Kadane’s algorithm
Data : array
Result : maxSum, left, right

1 (maxSum, left, right) = (−∞, 0, 0)
2 currentMaxSum = 0
3 currentStartIndex = 0
4 for i← 1 to n do
5 currentMaxSum = currentMaxSum + array(i)
6 if currentMaxSum > maxSum then
7 (maxSum, left, right) = (currentMaxSum, currentStartIndex, i)
8 end
9 if currentMaxSum < 0 then

10 currentMaxSum = 0
11 currentStartIndex = i + 1
12 end
13 end

The 2D algorithm relies on the use of Kadane’s algorithm

Algorithme 3 : 2D maximum subarray
1 ă Data : array

Result : maxSum, left, right, top, bottom
2 (maxSum, left, right, top, bottom) = (−∞, 0, 0, 0, 0)
3 for i← 0 to n do
4 temp(0 :n-1) = 0
5 for j ← i to n do
6 for k ← 0 to m do
7 temp(k) += array(j,k)
8 end
9 sum = kadane(temp, start, finish)

10 if sum > maxSum then
11 (maxSum, left, right, top, bottom) = (sum, i, j, start, finish)
12 end
13 end
14 end

Question 4

Design an algorithm that enable the resolution of the maximum subarray problem in parallel in 2D.

2 / 2


	Maximum value
	Matrix vector product
	Matrix product
	Maximum subarray

