Toward HPC

Chapter 5 – Patterns

M1 – MSIAM April 4, 2017

So far ...

Scalability

Performance is defined by 2 factors

- > Computational requirements (what needs to be done)
- > Computing resources (what it costs to do it)

Computational problems translate to requirements

Factors: hardware, time, energy, money

- Performance itself is a measure of how well the computational requirements can be satisfied
- ➤ We evaluate performance to understand the relationships between requirements and resources ⇒ Decide how to change methodology to target objectives
- Performance measures reflect decisions about how and how well approaches are able to satisfy the computational requirements

Some definition of parallelism

Performance issues when using a parallel computing environment: Performance with respect to parallel computation

- > Performance is why we do parallelism
- > Parallel performance versus sequential performance
- If the "performance" is not better, parallelism is not necessary

Parallel processing includes techniques and technologies necessary to compute in parallel: Hardware, networks, operating systems, parallel libraries, languages, compilers, algorithms, tools, . . .

Parallelism must deliver performance: How? How well?

If each processor is rated at k - GFlops and there are p processors, should we see kpGFlops performance?

If it takes 100 seconds on 1 processor, shouldn't it take 10 seconds on 10 processors?

Several causes affect performance

- ► Each must be understood separately
- But they interact with each other in complex ways: solution to one problem may create another or one problem may mask another

Scaling (system, problem size) can change conditions

Need to understand performance space

Analytical measure

Embarrassingly Parallelism

An embarrassingly parallel computation is one that can be obviously divided into completely independent parts that can be executed simultaneously

- In a truly embarrassingly parallel computation there is no interaction between separate processes
- In a nearly embarrassingly parallel computation results must be distributed and collected/combined in some way

Embarrassingly parallel computations have potential to achieve maximal speedup on parallel platforms

- If it takes T time sequentially, there is the potential to achieve T/P time running in parallel with P processors
- ➤ What would cause this not to be the case always?

- A program can scale up to use many processors: What does that mean?
- ► How do you evaluate scalability?
- ► How do you evaluate scalability goodness?
- Comparative evaluation: if double the number of processors, what to expect? Is scalability linear?
- Use parallel efficiency measure: is efficiency retained as problem size increases?
- ► Apply performance metrics

Evaluation

- $\blacktriangleright\,$ Sequential runtime T_{seq} is a function of problem size and architecture
- Parallel runtime T_{par} is a function of problem size, parallel architecture and number of processors used in the execution
- > Parallel performance affected by algorithm and architecture

Definition (Scalability)

Ability of parallel algorithm to achieve performance gains proportional to the number of processors and the size of the problem

Performance Metrics and Formulas

- T₁ is the execution time on a single processor
- > T_p is the execution time on a p processor system
- \blacktriangleright S(p) is the speedup

$$S(p)=T_1/T_p$$

 \blacktriangleright E(p) is the efficiency

$$Efficiency = S_p/p$$

 \blacktriangleright Cost(p) is the cost

$$Cost = pT_p$$

> Parallel algorithm is cost-optimal Parallel time = sequential time ($C(p) = T_1, E(p) = 100\%$) Laws on performances

Let f be the fraction of a program that is sequential. 1-f is the fraction that can be parallelized

Let $T_{\rm 1}$ be the execution time on 1 processor

Let T_p be the execution time on p processors

 S_p is the speedup

$$\begin{split} S_p &= T_1/T_p \\ &= T_1/(fT_1 + (1-f)T_1/p) \\ &= 1/(f + (1-f)/p) \end{split}$$

As $p \to \infty$, $S_p = 1/f$

Amdahl's law

11

Definition (Scalability)

Ability of parallel algorithm to achieve performance gains proportional to the number of processors and the size of the problem

When does Amdahl's Law apply?

- > When the problem size is fixed
- ▶ Strong scaling $(p \to \infty, S_p = S_\infty \to 1/f)$
- Speedup bound is determined by the degree of sequential execution time in the computation, not number of processors!!!
- Perfect efficiency is hard to achieve

Gustafson-Barsis' Law

- Often interested in larger problems when scaling
 - How big of a problem can be run
 - > Constrain problem size by parallel time
- Assume parallel time is kept constant

$$T(p) = C = \left(f + (1-f)\right) * C$$

- > What is the execution time on one processor? Let C = 1, then $T(s) = f_{seq} + p(1-f_{seq}) = 1 + (p-1)f_{par}$
- ➤ What is the speedup in this case?

$$S(p) = T_s/T_p = T_s/1 = f_{seq} + p(1 - f_{seq}) = 1 + (p-1)f_{par}$$

Definition (Scalability)

Ability of parallel algorithm to achieve performance gains proportional to the number of processors and the size of the problem

When does Gustafson's Law apply:

- When the problem size can increase as the number of processors increases
- ► Weak scaling $(S_p = 1 + (p-1)f_{par})$
- > Speedup function includes the number of processors!!!
- Can maintain or increase parallel efficiency as the problem scales

Amdahl's law vs Gustafson

Amdahl's law vs Gustafson

A program seen as directed acyclic graph (DAG) of tasks

- A task can not execute until all the inputs to the tasks are available
- > These come from outputs of earlier executing tasks
- > DAG shows explicitly the task dependencies

Hardware consists of workers (processing units)

We consider a greedy scheduler of the DAG tasks to workers

 \Longrightarrow No worker is idle while there are tasks still to execute

Example of DAG

- T_P is time to execute with P workers
- T_1 is time for serial execution. It is the sum of all tasks
- T_∞ is time along the critical path
 - Sequence of task execution (path) through DAG that takes the longest time to execute
 - > Assumes an infinite number workers available

Example

Let each task take 1 unit of time

- > $T_1 = 7$: All tasks have to be executed and in serial order
- ► $T_{\infty} = 5$: Time along the critical path
- In this case, it is the longest path length of any task order that maintains necessary dependencies

Suppose we only have P workers. We can write a work-span formula to derive a lower bound on ${\cal T}_P$

 $\max(T_1/P,T_\infty) \leq T_P$

 T_∞ is the best possible execution time

Theorem (Brent)

Capture the additional cost executing the other tasks not on the critical path.

Assume can do so without overhead. Then

$$T_P \leq (T_1 - T_\infty)/P + T_\infty$$

> $T_1 = 7$ > $T_{\infty} = 5$ > For P = 2

$$\begin{split} T_2 &\leq (T_1 - T_\infty)/P + T_\infty \\ &\leq (7-5)/2 + T_\infty \\ &\leq 6 \end{split}$$

 $\blacktriangleright\,$ Scalability requires that T_∞ be dominated by T_1

$$T_P\simeq T_1/P+T_\infty \text{ if } T_\infty\ll T_1$$

- Increasing work hurts parallel execution proportionately
- > The span impacts scalability, even for finite P

Sufficient parallelism implies linear speedup

$T_p \sim T_1/P \text{ if } T_1/T_\infty \gg P$

Applications

Conclusion

Neural Networks