
Toward HPC
Chapter 5 – Patterns

M1 – MSIAM
April 4, 2017



So far . . .



Foster design

Sequential
problem

D
ec

om
p

o
si

ti
on

Tasks

P
la

n
ifi

ca
ti

on

P2

P0

P3

P1

Process

S
tr

u
ct

u
ra

ti
on

P2

P0

P3

P1

Parallel
Programs

A
ff

ec
ta

ti
o
n

P2

P0

P3

P1

Processing
Units

1



Scalability



Computing performance

Performance is defined by 2 factors

ä Computational requirements (what needs to be done)

ä Computing resources (what it costs to do it)

Computational problems translate to requirements

Factors: hardware, time, energy, money

2



Why is it important

ä Performance itself is a measure of how well the
computational requirements can be satisfied

ä We evaluate performance to understand the relationships
between requirements and resources ⟹ Decide how to
change methodology to target objectives

ä Performance measures reflect decisions about how and
how well approaches are able to satisfy the computational
requirements

3



Some definition of parallelism

Performance issues when using a parallel computing
environment: Performance with respect to parallel computation

ä Performance is why we do parallelism

ä Parallel performance versus sequential performance

ä If the “performance” is not better, parallelism is not
necessary

Parallel processing includes techniques and technologies
necessary to compute in parallel: Hardware, networks, operating
systems, parallel libraries, languages, compilers, algorithms,
tools, . . .

Parallelism must deliver performance: How? How well?

4



What can we expect?

If each processor is rated at 𝑘 − 𝐺𝐹𝑙𝑜𝑝𝑠 and there are 𝑝
processors, should we see 𝑘𝑝𝐺𝐹𝑙𝑜𝑝𝑠 performance?

If it takes 100 seconds on 1 processor, shouldn’t it take 10
seconds on 10 processors?

Several causes affect performance

ä Each must be understood separately

ä But they interact with each other in complex ways: solution
to one problem may create another or one problem may
mask another

Scaling (system, problem size) can change conditions

Need to understand performance space

5



Analytical measure



Embarrassingly Parallelism

An embarrassingly parallel computation is one that can be
obviously divided into completely independent parts that can be
executed simultaneously

ä In a truly embarrassingly parallel computation there is no
interaction between separate processes

ä In a nearly embarrassingly parallel computation results
must be distributed and collected/combined in some way

Embarrassingly parallel computations have potential to achieve
maximal speedup on parallel platforms

ä If it takes 𝑇 time sequentially, there is the potential to
achieve 𝑇 /𝑃 time running in parallel with 𝑃 processors

ä What would cause this not to be the case always?
6



Scalability

ä A program can scale up to use many processors: What
does that mean?

ä How do you evaluate scalability?

ä How do you evaluate scalability goodness?

ä Comparative evaluation: if double the number of
processors, what to expect? Is scalability linear?

ä Use parallel efficiency measure: is efficiency retained as
problem size increases?

ä Apply performance metrics

7



A measure of performance

Evaluation

ä Sequential runtime 𝑇𝑠𝑒𝑞 is a function of problem size and
architecture

ä Parallel runtime 𝑇𝑝𝑎𝑟 is a function of problem size, parallel
architecture and number of processors used in the
execution

ä Parallel performance affected by algorithm and architecture

Definition (Scalability)
Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of the
problem

8



Performance Metrics and Formulas

ä 𝑇1 is the execution time on a single processor

ä 𝑇𝑝 is the execution time on a p processor system

ä 𝑆(𝑝) is the speedup

𝑆(𝑝) = 𝑇1/𝑇𝑝

ä 𝐸(𝑝) is the efficiency

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑆𝑝/𝑝
ä 𝐶𝑜𝑠𝑡(𝑝) is the cost

𝐶𝑜𝑠𝑡 = 𝑝𝑇𝑝

ä Parallel algorithm is cost-optimal
Parallel time = sequential time (𝐶(𝑝) = 𝑇1, 𝐸(𝑝) = 100%)

9



Laws on performances



Amdahl’s law

Let 𝑓 be the fraction of a program that is sequential. 1 − 𝑓 is the
fraction that can be parallelized

Let 𝑇1 be the execution time on 1 processor

Let 𝑇𝑝 be the execution time on 𝑝 processors

𝑆𝑝 is the speedup

𝑆𝑝 = 𝑇1/𝑇𝑝
= 𝑇1/(𝑓𝑇1 + (1 − 𝑓)𝑇1/𝑝)
= 1/(𝑓 + (1 − 𝑓)/𝑝)

As 𝑝 → ∞, 𝑆𝑝 = 1/𝑓

10



Amdahl’s law

11



Gustafson-Barsis’ Law

Definition (Scalability)
Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of the
problem

When does Amdahl’s Law apply?

ä When the problem size is fixed

ä Strong scaling (𝑝 → ∞, 𝑆𝑝 = 𝑆∞ → 1/𝑓)

ä Speedup bound is determined by the degree of sequential
execution time in the computation, not number of
processors!!!

ä Perfect efficiency is hard to achieve

12



Gustafson-Barsis’ Law

ä Often interested in larger problems when scaling
ä How big of a problem can be run

ä Constrain problem size by parallel time

ä Assume parallel time is kept constant

𝑇 (𝑝) = 𝐶 = (𝑓 + (1 − 𝑓)) ∗ 𝐶

ä What is the execution time on one processor? Let 𝐶 = 1,
then 𝑇 (𝑠) = 𝑓𝑠𝑒𝑞 + 𝑝(1–𝑓𝑠𝑒𝑞) = 1 + (𝑝 − 1)𝑓𝑝𝑎𝑟

ä What is the speedup in this case?

𝑆(𝑝) = 𝑇𝑠/𝑇𝑝 = 𝑇𝑠/1 = 𝑓𝑠𝑒𝑞 + 𝑝(1–𝑓𝑠𝑒𝑞) = 1 + (𝑝 − 1)𝑓𝑝𝑎𝑟

13



Definition (Scalability)
Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of the
problem

When does Gustafson’s Law apply:

ä When the problem size can increase as the number of
processors increases

ä Weak scaling (𝑆𝑝 = 1 + (𝑝 − 1)𝑓𝑝𝑎𝑟)

ä Speedup function includes the number of processors!!!

ä Can maintain or increase parallel efficiency as the problem
scales

14



Amdahl’s law vs Gustafson

P=1 P=2 P=3 P=4

Serial section

Parallelizable section

15



Amdahl’s law vs Gustafson

P=1 P=2 P=3 P=4

Serial section

Parallelizable section

16



DAG Model of Computation

A program seen as directed acyclic graph (DAG) of tasks

ä A task can not execute until all the inputs to the tasks are
available

ä These come from outputs of earlier executing tasks

ä DAG shows explicitly the task dependencies

Hardware consists of workers (processing units)

We consider a greedy scheduler of the DAG tasks to workers

⟹ No worker is idle while there are tasks still to execute

17



Example of DAG

a

b

c

d

e

f

g 18



Execution time

𝑇𝑃 is time to execute with 𝑃 workers

𝑇1 is time for serial execution. It is the sum of all tasks

𝑇∞ is time along the critical path

ä Sequence of task execution (path) through DAG that takes
the longest time to execute

ä Assumes an infinite number workers available

19



Example

Let each task take 1 unit of time

ä 𝑇1 = 7: All tasks have to
be executed and in serial
order

ä 𝑇∞ = 5: Time along the
critical path

ä In this case, it is the
longest path length of any
task order that maintains
necessary dependencies

a

b

e

f

g

c

d

20



Bounds

Suppose we only have 𝑃 workers. We can write a work-span
formula to derive a lower bound on 𝑇𝑃

max(𝑇1/𝑃 , 𝑇∞) ≤ 𝑇𝑃

𝑇∞ is the best possible execution time

Theorem (Brent)
Capture the additional cost executing the other tasks not on the
critical path.

Assume can do so without overhead. Then

𝑇𝑃 ≤ (𝑇1 − 𝑇∞)/𝑃 + 𝑇∞

21



Application

ä 𝑇1 = 7

ä 𝑇∞ = 5

ä For 𝑃 = 2

𝑇2 ≤ (𝑇1 − 𝑇∞)/𝑃 + 𝑇∞
≤ (7 − 5)/2 + 𝑇∞
≤ 6

22



Estimation of running time

ä Scalability requires that 𝑇∞ be dominated by 𝑇1

𝑇𝑃 ≃ 𝑇1/𝑃 + 𝑇∞ if 𝑇∞ ≪ 𝑇1

ä Increasing work hurts parallel execution proportionately

ä The span impacts scalability, even for finite P

23



Available parallelism

Sufficient parallelism implies linear speedup

𝑇𝑝 ∼ 𝑇1/𝑃 if 𝑇1/𝑇∞ ≫ 𝑃

24



Applications

25



Conclusion



Next. . .

Neural Networks

26


	So far 
	Scalability
	Analytical measure
	Laws on performances

