Toward HPC
Chapter 5 — Patterns

M1 — MSIAM
April 4,2017



So far...



Foster design

‘ 00
o0
a
= 000 ¢ : g
< =
—é—». ..—Jé—» —g—» —;;—»
i 00 : S i <
(X
00 0
rviy Tasks Process Progmonas it



Scalability



Computing performance

Performance is defined by 2 factors
» Computational requirements (what needs to be done)
» Computing resources (what it costs to do it)

Computational problems translate to requirements

Factors: hardware, time, energy, money



Why is it important

» Performance itself is a measure of how well the
computational requirements can be satisfied

» We evaluate performance to understand the relationships
between requirements and resources = Decide how to
change methodology to target objectives

» Performance measures reflect decisions about how and
how well approaches are able to satisfy the computational
requirements



Some definition of parallelism

Performance issues when using a parallel computing
environment: Performance with respect to parallel computation

» Performance is why we do parallelism
» Parallel performance versus sequential performance

» |f the “performance” is not better, parallelism is not
necessary

Parallel processing includes techniques and technologies
necessary to compute in parallel: Hardware, networks, operating
systems, parallel libraries, languages, compilers, algorithmes,
tools, ...

Parallelism must deliver performance: How? How well?



What can we expect?

If each processor is rated at k — G Flops and there are p
processors, should we see kpGFlops performance?

If it takes 100 seconds on 1 processor, shouldn't it take 10
seconds on 10 processors?

Several causes affect performance

» Each must be understood separately

» But they interact with each other in complex ways: solution
to one problem may create another or one problem may
mask another

Scaling (system, problem size) can change conditions

Need to understand performance space



Analytical measure



Embarrassingly Parallelism

An embarrassingly parallel computation is one that can be
obviously divided into completely independent parts that can be
executed simultaneously

» In a truly embarrassingly parallel computation there is no
interaction between separate processes

» In a nearly embarrassingly parallel computation results
must be distributed and collected/combined in some way

Embarrassingly parallel computations have potential to achieve
maximal speedup on parallel platforms

» If it takes T' time sequentially, there is the potential to
achieve T'/ P time running in parallel with P processors

» What would cause this not to be the case always?



Scalability

» A program can scale up to use many processors: What
does that mean?

» How do you evaluate scalability?
» How do you evaluate scalability goodness?

» Comparative evaluation: if double the number of
processors, what to expect? |Is scalability linear?

» Use parallel efficiency measure: is efficiency retained as
problem size increases?

» Apply performance metrics



A measure of performance

Evaluation

» Sequential runtime T, is a function of problem size and
architecture

» Parallel runtime T, ,,. is a function of problem size, parallel

architecture and number of processors used in the
execution

» Parallel performance affected by algorithm and architecture

Definition (Scalability)

Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of the
problem



Performance Metrics and Formulas

» T, is the execution time on a single processor
» T, is the execution time on a p processor system

» S(p) is the speedup
S(p) =T, /Tp
» E(p) is the efficiency
Ef ficiency = S, /p
» Cost(p) is the cost
Cost = pT,

» Parallel algorithm is cost-optimal
Parallel time = sequential time (C(p) = T}, E(p) = 100%)



Laws on performances



Amdahl’s law

Let f be the fraction of a program that is sequential. 1 — f is the
fraction that can be parallelized

Let T, be the execution time on 1 processor
Let T,, be the execution time on p processors
S, is the speedup
Sy = Tl/Tp
=Ty /(T + (1= f)T1/p)
=1/(f+ 1 —1)/p)

Asp— 00,8, =1/f

10



Amdahl’s law

15.0

125

Speedup

7.5

5.0

2.5

Parallel part
— 95%
— 90%
— 75%
— 50%

o~ < © © o~
= 3 & ] =
A < n

1024

Number of Processors

2048

4096

8192

16384

32768

65536

11



Gustafson-Barsis’ Law

Definition (Scalability)

Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of the
problem

When does Amdahl's Law apply?
» When the problem size is fixed

» Strong scaling (p — o0, S, = S, = 1/f)

» Speedup bound is determined by the degree of sequential
execution time in the computation, not number of
processorsl!!

» Perfect efficiency is hard to achieve

12



Gustafson-Barsis’ Law

» Often interested in larger problems when scaling
» How big of a problem can be run

» Constrain problem size by parallel time
» Assume parallel time is kept constant
Tp)=C=(+Q0-[))=*C

» What is the execution time on one processor? Let C' = 1,
then T(S) - fseq +p(17fseq) =1 + (p _ l)fpar

» What is the speedup in this case?
S<p) = Ts/Tp = Ts/l = fseq +p(17fseq> =1 + (p_ 1)fpar

13



Definition (Scalability)

Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of the
problem

When does Gustafson's Law apply:

» When the problem size can increase as the number of
processors increases

» Weak scaling (S, =14 (p — 1) fpar)

» Speedup function includes the number of processors!!!

» Can maintain or increase parallel efficiency as the problem
scales

14



Amdahl’s law vs Gustafson

P=1 P=2 P=3 P=4
Serial section I
III ENEEER
Parallelizable section

15



Amdahl’s law vs Gustafson

Serial section

P=1 p=2 P=3 P=4
1 I II IIII IIIIIII

16



DAG Model of Computation

A program seen as directed acyclic graph (DAG) of tasks

» A task can not execute until all the inputs to the tasks are
available

» These come from outputs of earlier executing tasks

» DAG shows explicitly the task dependencies

Hardware consists of workers (processing units)
We consider a greedy scheduler of the DAG tasks to workers

= No worker is idle while there are tasks still to execute

17






T'p is time to execute with P workers
T, is time for serial execution. It is the sum of all tasks

T is time along the critical path

» Sequence of task execution (path) through DAG that takes
the longest time to execute

» Assumes an infinite number workers available

19



Let each task take 1 unit of time

» T, = 7. All tasks have to
be executed and in serial
order d

J‘
» T, = 5 Time along the .
critical path /
.
@

» In this case, it is the
longest path length of any
task order that maintains
necessary dependencies

20



Suppose we only have P workers. We can write a work-span
formula to derive a lower bound on T

max(T, /P, T ) <Tp

T is the best possible execution time

Theorem (Brent)

Capture the additional cost executing the other tasks not on the
critical path.

Assume can do so without overhead. Then

21



Application

> T _ =5

» ForP =2

o3
I

T, —T.)/P+T.,
7—5)/2+T.,

IAIA
S /™

22



Estimation of running time

» Scalability requires that T, be dominated by T
Tp>=T,/P+T ifT, <T;
» Increasing work hurts parallel execution proportionately

» The span impacts scalability, even for finite P

23



Available parallelism

Sufficient parallelism implies linear speedup
T, ~Ty/PifTy /Ty > P

24



Applications

25



Conclusion




Neural Networks

26



	So far 
	Scalability
	Analytical measure
	Laws on performances

