
Toward HPC
Chapter 5 – Patterns

M1 – MSIAM
March 15, 2017

So far . . .

Foster design

Sequential
problem

D
ec

om
p

o
si

ti
on

Tasks

P
la

n
ifi

ca
ti

on

P2

P0

P3

P1

Process

S
tr

u
ct

u
ra

ti
on

P2

P0

P3

P1

Parallel
Programs

A
ff

ec
ta

ti
o
n

P2

P0

P3

P1

Processing
Units

1

Serial control patterns

Definition

Structured serial programming is based on these patterns:
sequence, selection, iteration, and recursion

The nesting pattern can also be used to hierarchically compose
these four patterns

Though you should be familiar with these, it’s extra important to
understand these patterns when parallelizing serial algorithms
based on these patterns

2

Sequence

Ordered list of tasks that are executed in a specific order

Assumption – program text ordering will be followed (obvious,
but this will be important when parallelized)

A f g h B

g
A h B

f

3

Selection

Condition c is first evaluated. Either task a or b is executed
depending on the true or false result of c.

Assumptions – a and b are never executed before c, and only a
or b is executed - never both

g
A B

f

4

Iteration

Condition c is evaluated. If true, a is evaluated, and then c is
evaluated again. This repeats until c is false.

Complication when parallelizing: potential for dependencies to
exist between previous iterations

A
f

5

Recursion

Dynamic form of nesting allowing functions to call themselves

Tail recursion is a special recursion that can be converted into
iteration – important for functional languages

6

Parallel control patterns

Definition

Parallel control patterns extend serial control patterns

Each parallel control pattern is related to at least one serial
control pattern, but relaxes assumptions of serial control
patterns

Parallel control patterns: fork-join, map, stencil, reduction, scan,
recurrence

7

Fork-Join

allows control flow to fork into multiple parallel flows, then rejoin
later.

A ”join” is different than a ”barrier”

ä Sync – only one thread continues

ä Barrier – all threads continue

8

Map

Performs a function over every element of a collection

Map replicates a serial iteration pattern where each iteration is
independent of the others, the number of iterations is known in
advance, and computation only depends on the iteration count
and data from the input collection

The replicated function is referred to as an “elemental function”

.

.

9

Stencil

Elemental function accesses a set of “neighbors”, stencil is a
generalization of map

Often combined with iteration – used with iterative solvers or to
evolve a system through time

Boundary conditions must be handled carefully in the stencil
pattern

10

Réduction

Combines every element in a collection using an associative
“combiner function”

Because of the associativity of the combiner function, different
orderings of the reduction are possible

Examples of combiner functions: addition, multiplication,
maximum, minimum, and Boolean AND, OR, and XOR

11

Réduction

. . .

. . .

. . .

. . .

. . .

. . .

12

Scan

Computes all partial reduction of a collection

For every output in a collection, a reduction of the input up to
that point is computed

If the function being used is associative, the scan can be
parallelized

Parallelizing a scan is not obvious at first, because of
dependencies to previous iterations in the serial loop

A parallel scan will require more operations than a serial version

13

Scan

. . .

. . .

. . .

14

Recurrence

More complex version of map, where the loop iterations can
depend on one another

Similar to map, but elements can use outputs of adjacent
elements as inputs

For a recurrence to be computable, there must be a serial
ordering of the recurrence elements so that elements can be
computed using previously computed outputs

15

Serial data management patterns

Definition

Serial programs can manage data in many ways

Data management deals with how data is allocated, shared,
read, written, and copied

Serial Data Management Patterns: random read and write, stack
allocation, heap allocation,objects

16

Random read/write

Memory locations indexed with addresses

Pointers are typically used to refer to memory addresses

Aliasing (uncertainty of two pointers referring to the same
object) can cause problems when serial code is parallelized

17

Stack Allocation

Stack allocation is useful for dynamically allocating data in LIFO
manner

Efficient – arbitrary amount of data can be allocated in constant
time

Stack allocation also preserves locality

When parallelized, typically each thread will get its own stack so
thread locality is preserved

18

Heap Allocation

Heap allocation is useful when data cannot be allocated in a
LIFO fashion

But, heap allocation is slower and more complex than stack
allocation

A parallelized heap allocator should be used when dynamically
allocating memory in parallel

This type of allocator will keep separate pools for each parallel
worker

19

Objects

Objects are language constructs to associate data with code to
manipulate and manage that data

Objects can have member functions, and they also are
considered members of a class of objects

Parallel programming models will generalize objects in various
ways

20

Parallel data management patterns

Definition

To avoid things like race conditions, it is critically important to
know when data is, and isn’t, potentially shared by multiple
parallel workers

Some parallel data management patterns help us with data
locality

Parallel data management patterns: pack, pipeline, geometric
decomposition, gather, and scatter

21

Pack

Pack is used eliminate unused space in a collection

Elements marked false are discarded, the remaining elements
are placed in a contiguous sequence in the same order

Useful when used with map

Unpack is the inverse and is used to place elements back in their
original locations

0 1 1 0 0 1 1 1

A B C D E F G H

B C F G H 22

Pipeline

Connects tasks in a producer consumer manner

A linear pipeline is the basic pattern idea, but a pipeline in a DAG
is also possible

Pipelines are most useful when used with other patterns as they
can multiply available parallelism

23

Geometric Decomposition

Arranges data into subcollections

Overlapping and non-overlapping decompositions are possible

This pattern doesn’t necessarily move data, it just gives us
another view of it

24

Gather pattern

All the threads read data from specific and distincts places.
Some operation is realized on the data. One thread write the
result in a unique place.

.

.

25

Gather pattern

26

Scatter pattern

All the threads compute the memory space to which the output
will be written.

.

.

27

Scatter pattern (2)

28

Transposition pattern (1)

All the threads read data in some array and rewrite it to some
other part of the array. The position is well defined.

1

1

6

6

11

11

2 2

7

7

12

123

38 8

13

13

4

4

9

914 14

5

5

10

10

15

15

. . . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

. . . 1 6 11 2 7 12 3 8 13 4 9 14 5 10 15 . . .

29

Transposition pattern (2)

We can also use the concept of transposition for an arrays of
structures to build a structure of array.

. . . a b a b a b a b a b . . .

.a ba ba ba ba b.

30

Other patterns

Superscalar Sequences: write a sequence of tasks, ordered only
by dependencies

Futures: similar to fork-join, but tasks do not need to be nested
hierarchically

Speculative Selection: general version of serial selection where
the condition and both outcomes can all run in parallel

Workpile: general map pattern where each instance of elemental
function can generate more instances, adding to the “pile” of
work

31

Other patterns

Search: finds some data in a collection that meets some criteria

Segmentation: operations on subdivided, nonoverlapping,
non-uniformly sized partitions of 1D collections

Expand: a combination of pack and map

Category Reduction: Given a collection of elements each with a
label, find all elements with same label and reduce them

32

Radix sort

. . . 170 45 75 90 2 24 802 66 . . .

. . . 170 90 02 802 24 45 75 66 . . .

. . . 002 802 024 045 066 170 075 090 . . .

. . . 002 024 045 066 075 090 170 802 . . .

33

Conclusion

Next. . .

Specific patterns

34

*

Performances

Measure of performances

ä A sequential computation has 3 phases: setup, processing
and completion.

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑖𝑛𝑖𝑡 + 𝑇𝑐𝑎𝑙𝑐𝑢𝑙 + 𝑇𝑐𝑜𝑚𝑝

ä If the computation is made using 𝑃 units

𝑇𝑡𝑜𝑡𝑎𝑙(𝑃) = 𝑇𝑖𝑛𝑖𝑡 + 𝑇𝑐𝑎𝑙𝑐𝑢𝑙
𝑃 + 𝑇𝑐𝑜𝑚𝑝𝑙

Definition
We can define the speedup

𝑆(𝑃) = 𝑇𝑡𝑜𝑡𝑎𝑙
𝑇𝑡𝑜𝑡𝑎𝑙(𝑃)

and the efficiency

𝐸(𝑃) = 𝑆(𝑃)
𝑃

Amdhal’s law (1)

ä The part of the code that cannot be executed
simultaneously represent a certain percentage of the total
time

𝛾 = 𝑇𝑖𝑛𝑖𝑡 + 𝑇𝑐𝑜𝑚𝑝𝑙
𝑇𝑡𝑜𝑡𝑎𝑙(1)

Definition 1

Using 𝛾, we can write the Amdhal’s law

𝑆(𝑃) = 𝑇𝑡𝑜𝑡𝑎𝑙(1)
(𝛾 + 1 − 𝛾

𝑃) 𝑇𝑡𝑜𝑡𝑎𝑙(1)

= 1
1 + 1 − 𝛾

𝑃

ä Programming constraints are ignored: threads
management, bottleneck, . . .

ä Main hypothesis: parallelism does not have any intrinsic
cost.

Amdhal’s law (2)

ä The scalar part 𝛾 contains all the timing corresponding to
thread managements, scalar computations, os operations.

ä The parallel part 1 − 𝛾 is completely parallel

ä The upper bound for the speedup is given by

𝑆(𝑃) < 1
𝛾

P

S(P)

1

γ

ä If the workload does not increase, it is unnecessary to
increase the number of processor.

Gustafson’s law

ä 𝛾 is normalized with respect to the number of processing
units.

𝛾(𝑃) = 𝑇𝑖𝑛𝑖𝑡 + 𝑇𝑐𝑜𝑚𝑝𝑙
𝑇𝑡𝑜𝑡𝑎𝑙(𝑃)

Definition 2

Gustafson’s law writes

𝑆(𝑃) = 𝑃 + (1 − 𝑃)𝛾(𝑃)

ä Using this law, we can study the impact of the number of
processing unit on the computation.

Notes on performances (1)

ä Quote only 32-bit performance results, not 64-bit results.

ä Present performance figures for an inner kernel, and then
represent these figures as the performance of the entire
application.

ä Quietly employ assembly code and other low-level language
constructs.

ä Scale up the problem size with the number of processors,
but omit any mention of this fact.

ä Quote performance results projected to a full system.

ä Compare your results against scalar, unoptimized code on
Crays.

Notes on performances (2)

ä When direct run time comparisons are required, compare
with an old code on an obsolete system.

ä If MFLOPS rates must be quoted, base the operation count
on the parallel implementation, not on the best sequential
implementation.

ä Quote performance in terms of processor utilization, parallel
speedups or MFLOPS per dollar.

ä Mutilate the algorithm used in the parallel implementation
to match the architecture.

ä Measure parallel run times on a dedicated system, but
measure conventional run times in a busy environment.

ä If all else fails, show pretty pictures and animated videos,
and don’t talk about performance.

	So far . . .
	Serial control patterns
	Parallel control patterns
	Serial data management patterns
	Parallel data management patterns

