
Toward HPC
Chapter 4 – OpenMP

M1 – MSIAM
March 13, 2018

1

So far . . .

Foster design

Sequential
problem

D
ec

om
p

o
si

ti
on

Tasks

P
la

n
ifi

ca
ti

on

P2

P0

P3

P1

Process

S
tr

u
ct

u
ra

ti
on

P2

P0

P3

P1

Parallel
Programs

A
ff

ec
ta

ti
o
n

P2

P0

P3

P1

Processing
Units

2

About OpenMP

What is OpenMP

ä OpenMP provides high-level thread programming
ä Multiple cooperating threads are allowed to run simultaneously
ä Threads are created and destroyed dynamically in a fork-join pattern

• An OpenMP program consists of a number of parallel regions
• Between two parallel regions there is only one master thread
• In the beginning of a parallel region, a team of new threads is spawned

ä The newly spawned threads work simultaneously with the master thread
ä At the end of a parallel region, the new threads are destroyed

Fork-Join Execution Model

ä Parallelism is achieved by generating multiple threads that run in parallel
• A fork F is when a single thread is made into multiple, concurrently

executing threads
• A join J is when the concurrently executing threads synchronize back into

a single thread

ä OpenMP programs essentially consist of a series of forks and joins.

thread 0
thread 0

thread 1
thread 0 F J thread 0 F thread 1 J thread 0

thread 2
thread 2

thread 3

4

Getting started, things to remember

ä Remember the header file

#include <omp.h>

ä Insert compiler directives in C++ syntax as

#pragma omp...

ä Compile with for example c++ -fopenmp code.cpp
ä Execute

• Remember to assign the environment variable OMP_NUM_THREADS
• It specifies the total number of threads inside a parallel region, if not

otherwise overwritten

General code structure

#include <omp.h>
main ()
{
int var1, var2, var3;
/* serial code */
/* ... */
/* start of a parallel region */
#pragma omp parallel private(var1, var2) shared(var3)
{
/* ... */
}
/* more serial code */
/* ... */
/* another parallel region */
#pragma omp parallel
{
/* ... */
}
}

Parallel Region

Parallel region

ä A parallel region is a block of code that is executed by a team of threads
ä The following compiler directive creates a parallel region

#pragma omp parallel { ... }

ä Clauses can be added at the end of the directive
ä Most often used clauses

• default(shared) or default(none)
• public(list of variables)
• private(list of variables)

Hello world, not again, please!

#include <omp.h>
#include <cstdio>
intmain (int argc, char *argv[])
{
int th_id, nthreads;
#pragma omp parallel private(th_id) shared(nthreads)
{
th_id = omp_get_thread_num();
printf("Hello World from thread%d\n", th_id);

#pragma omp barrier
if (th_id == 0) {
nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);
}
}
return 0;
}

Important OpenMP library routines

ä int omp_get_num_threads(), returns the number of threads inside a
parallel region

ä int omp_get_thread_num(), returns the a thread for each thread inside a
parallel region

ä void omp_set_num_threads(int), sets the number of threads to be used
ä void omp_set_nested(int), turns nested parallelism on/off

Single execution

#pragma omp single { ... }

The code is executed by one thread only, no guarantee which thread

Can introduce an implicit barrier at the end

#pragma ompmaster { ... }

Code executed by the master thread, guaranteed and no implicit barrier at the
end.

Coordination and synchronization

#pragma omp barrier

Synchronization, must be encountered by all threads in a team (or none)

#pragma omp ordered { a block of codes }

is another form of synchronization (in sequential order). The form

#pragma omp critical { a block of codes }

and

#pragma omp atomic { single assignment statement }

is more efficient than

#pragma omp critical { a block of codes }

Data scope

OpenMP data scope attribute clauses:

ä shared

ä private

ä firstprivate

ä lastprivate

ä reduction

What are the purposes of these attributes

ä define how and which variables are transferred to a parallel region (and
back)

ä define which variables are visible to all threads in a parallel region, and
which variables are privately allocated to each thread

Some remarks

ä When entering a parallel region, the private clause ensures each thread
having its own new variable instances. The new variables are assumed to
be uninitialized.

ä A shared variable exists in only one memory location and all threads can
read and write to that address. It is the programmer’s responsibility to
ensure that multiple threads properly access a shared variable.

ä The firstprivate clause combines the behavior of the private clause with
automatic initialization.

ä The lastprivate clause combines the behavior of the private clause with a
copy back (from the last loop iteration or section) to the original variable
outside the parallel region.

Worksharing constructs

Parallel for loop

ä Inside a parallel region, the following compiler directive can be used to
parallelize a for-loop:

#pragma omp for

ä Clauses can be added, such as
• schedule(static, chunk size)
• schedule(dynamic, chunk size)
• schedule(guided, chunk size) (non-deterministic allocation)
• schedule(runtime)
• private(list of variables)
• reduction(operator:variable)
• nowait

Load balancing

Schedule When to Use

static
Even and predictable workload per iteration;
scheduling may be done at compilation time,
least work at runtime.

dynamic
Highly variable and unpredictable workload
per iteration; most work at runtime

guided
Special case of dynamic scheduling;
compromise between load balancing and
scheduling overhead at runtime

Example code

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
main ()
{
int i, chunk;
float a[N], b[N], c[N];
for (i=0; i < N; i++)
a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk)
for (i=0; i < N; i++)
c[i] = a[i] + b[i];

} /* end of parallel region */
}

More on Parallel for loop

ä The number of loop iterations can not be non-deterministic; break,
return, exit, goto not allowed inside the for-loop

ä The loop index is private to each thread
ä A reduction variable is special

• During the for-loop there is a local private copy in each thread
• At the end of the for-loop, all the local copies are combined together by the

reduction operation

ä Unless the nowait clause is used, an implicit barrier synchronization will be
added at the end by the compiler

// #pragma omp parallel and #pragma omp for

can be combined into
#pragma omp parallel for

What can happen with this loop?

What happens with code like this

#pragma omp parallel for
for (i=0; i<n; i++) {
sum += a[i]*a[i];
}

All threads can access the sum variable, but the addition is not atomic! It is
important to avoid race between threads. So-called reductions in OpenMP are
thus important for performance and for obtaining correct results. OpenMP lets
us indicate that a variable is used for a reduction with a particular operator.
The above code becomes

sum = 0.0;
#pragma omp parallel for reduction(+:sum)
for (i=0; i<n; i++) {
sum += a[i]*a[i];
}

18

Inner product

n−1∑
i=0

aibi

int i;
double sum = 0.;

/* allocating and initializing arrays */
/* ... */
#pragma omp parallel for default(shared) private(i) reduction(+:sum)
for (i=0; i<N; i++){
sum += a[i]*b[i];
}

Different threads do different tasks

Different threads do different tasks independently, each section is executed by
one thread.

#pragma omp parallel
{
#pragma omp sections
{
#pragma omp section
funcA ();

#pragma omp section
funcB ();

#pragma omp section
funcC ();
}
}

Parallelizing nested for-loops

Serial code
for (i=0; i<100; i++){
for (j=0; j<100; j++){
a[i][j] = b[i][j] + c[i][j]
}
}

ä Why not parallelize the inner loop?
ä Why must j be private?

Parallelizing nested for-loops

Parallelization
#pragma omp parallel for private(j)
for (i=0; i<100; i++){
for (j=0; j<100; j++){
a[i][j] = b[i][j] + c[i][j]
}
}

ä Why not parallelize the inner loop?
ä Why must j be private?

Nested parallelism

When a thread in a parallel region encounters another parallel construct, it may
create a new team of threads and become the master of the new team.

#pragma omp parallel num_threads(4)
{
/* */
#pragma omp parallel num_threads(2)
{
//
}
}

Tasking construct

struct node {
struct node *left, *right;
};
void traverse(struct node *p) {
if (p->left)
#pragma omp task
traverse(p->left);
if (p->right)
#pragma omp task
traverse(p->right);
process(p);
}
intmain() {
node *root = ...;
#pragma omp parallel
#pragma omp single
traverse(root);
}

Parallel tasks

When a thread encounters a task construct, a task is generated for the
associated structured block.

The encountering thread may immediately execute the task, or defer its
execution. In the latter case, any thread in the team may be assigned the task.

task should be called from within a parallel region for the different specified
tasks to be executed in parallel.

The tasks will be executed in no specified order because there are no
synchronization directives.

void postorder_traverse(struct node *p) {
if (p->left)
#pragma omp task
postorder_traverse(p->left);
if (p->right)
#pragma omp task
postorder_traverse(p->right);

#pragma omp taskwait
process(p);
}

What do you think this code does? How does the execution differ from the
previous case?

Parallel tasks

OpenMP defines the concept of child task. A child task of a piece of code
(region) is a task generated by a directive

#pragma omp task

found in that piece of code.

For example, in the previous code postorder_traverse(p->left) and
postorder_traverse(p->right) are child tasks of the enclosing region.

taskwait specifies a wait on the completion of the child tasks of the current
task (precisely the region the current task is executing).

Note that taskwait requires to wait for completion of the child tasks, but not
completion of all descendant tasks (e.g., child tasks of child tasks).

Tree traversal with section

void traverse(struct node *p) {
#pragma omp parallel sections
{
#pragma omp section
if (p->left)
traverse(p->left);

#pragma omp section
if (p->right)
traverse(p->right);

}
process(p);
}

What do you think of this code does ?

Explanation

The problem with the previous code is that each thread entering one of the
sections will call traverse, which leads to the creation of a new parallel region
because of

#pragma omp parallel sections

The result is that this makes it more difficult in general to control the number
of threads being generated by this implementation.

Common mistakes

Race condition
int nthreads;
#pragma omp parallel shared(nthreads)
{
nthreads = omp_get_num_threads();
}

Common mistakes

Deadlock
#pragma omp parallel
{
...
#pragma omp critical
{
...

#pragma omp barrier
}
}

Common mistakes

Livelock
#pragma omp parallel
{
flag[id] = true;
while (flag[!id]){
flag[id] = false;
/*delay */;
flag[id] = true;
}
}
#pragma omp critical
flag[id] = false;

Not all computations are simple

Not all computations are simple loops where the data can be evenly divided
among threads without any dependencies between threads

An example is finding the location and value of the largest element in an array

for (i=0; i<n; i++) {
if (x[i] > maxval) {
maxval = x[i];
maxloc = i;
}
}

31

Not all computations are simple, competing threads

All threads are potentially accessing and changing the same values, maxloc and
maxval.

OpenMP provides several ways to coordinate access to shared values

#pragma omp atomic

Only one thread at a time can execute the following statement (not block). We
can use the critical option

#pragma omp critical

Only one thread at a time can execute the following block atomic may be
faster than critical but depends on hardware

32

How to find the max value using OpenMP

Write down the simplest algorithm and look carefully for race conditions. How
would you handle them? The first step would be to parallelize as

#pragma omp parallel for
for (i=0; i<n; i++) {
if (x[i] > maxval) {
maxval = x[i];
maxloc = i;
}
}

33

Then deal with the race conditions

Write down the simplest algorithm and look carefully for race conditions. How
would you handle them? The first step would be to parallelize as

#pragma omp parallel for
for (i=0; i<n; i++) {
#pragma omp critical
if (x[i] > maxval) {
maxval = x[i];
maxloc = i;
}
}

34

What can slow down OpenMP performance?

Performance poor because we insisted on keeping track of the maxval and
location during the execution of the loop.

We do not care about the value during the execution of the loop, just the value
at the end.

This is a common source of performance issues, namely the description of the
method used to compute a value imposes additional, unnecessary requirements
or properties

Idea: Have each thread find the maxloc in its own data, then combine and use
temporary arrays indexed by thread number to hold the values found by each
thread

35

Find the max location for each thread

intmaxloc[MAX_THREADS], mloc;
doublemaxval[MAX_THREADS], mval;
#pragma omp parallel shared(maxval,maxloc)
{
int id = omp_get_thread_num();
maxval[id] = -1.0e30;
#pragma omp for
for (int i=0; i<n; i++) {
if (x[i] > maxval[id]) {
maxloc[id] = i;
maxval[id] = x[i];
}
}
}

36

Combine the values from each thread

#pragma omp flush (maxloc,maxval)
#pragma ompmaster
{
int nt = omp_get_num_threads();
mloc = maxloc[0];
mval = maxval[0];
for (int i=1; i<nt; i++) {
if (maxval[i] > mval) {
mval = maxval[i];
mloc = maxloc[i];
}
}
}

37

Portable Sequential Equivalence

Portable Sequential Equivalence (PSE):

ä when a program is sequentially equivalent if its results are the same with
one thread or many threads

ä For a program to be portable (runs the same on different
platforms/compilers) it must execute identically when the OpenMP
constructs are used or ignored

Strong SE: bitwise identical results

Weak SE: equivalent mathematically, not bitwise identical

38

Portable Sequential Equivalence

ä Strong SE:
• Locate all cases where a shared variable can be written by multiple threads
• The access to the variable must be protected
• If multiple threads combine results into a single value, enforce sequential

order
ä Weak SE:

• Floating point arithmetic is not associative and not commutative
• In most cases no particular grouping is mathematically preferred so why

choose the sequential order?

39

Next. . .

Specific patterns

40

Some examples

Max subarray

1 Data: array
Result: maxSum, left, right, top, bottom

2 (maxSum, left, right, top, bottom) = (−∞, 0, 0, 0, 0)
3 for i← 0 to n do
4 for j← i to n do
5 temp(0:n-1) = 0
6 for k← 0 to m do
7 temp(k) += array(j,k)
8 end
9 sum = kadane(temp, start, finish)

10 if sum > maxSum then
11 (maxSum, left, right, top, bottom) = (sum, i, j, start, finish)
12 end
13 end
14 end

Matrix-matrix multiplication

include <cstdlib>
include <cmath>
include <ctime>
include <iostream>
include <omp.h>

using namespace std;

// Main function
intmain ()
{
// brute force coding of arrays
double a[500][500];
double angle;
double b[500][500];
double c[500][500];
int i;
int j;
int k;

Matrix-matrix multiplication

int n = 500;
double pi = acos(-1.0);
double s;
int thread_num;
doublewtime;

cout << "\n";
cout << " C++/OpenMP version\n";
cout << " Compute matrix product C = A * B.\n";

thread_num = omp_get_max_threads ();

//
// Loop 1: Evaluate A.
//
s = 1.0 / sqrt ((double) (n));

wtime = omp_get_wtime ();

Matrix-matrix multiplication

pragma omp parallel shared (defualt) private (angle, i, j, k)
{
pragma omp for
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
angle = 2.0 * pi * i * j / (double) n;
a[i][j] = s * (sin (angle) + cos (angle));
}
}
//
// Loop 2: Copy A into B.
//
pragma omp for
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
b[i][j] = a[i][j];
}
}

Matrix-matrix multiplication

// Loop 3: Compute C = A * B.
pragma omp for
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
c[i][j] = 0.0;
for (k = 0; k < n; k++)
{
c[i][j] = c[i][j] + a[i][k] * b[k][j];
}
}
}
}
wtime = omp_get_wtime () - wtime;
cout << " Elapsed seconds = " << wtime << "\n";
cout << " C(100,100) = " << c[99][99] << "\n";
//
// Terminate.
//
cout << "\n";
cout << " Normal end of execution.\n";
return 0;
}

	So far . . .
	About OpenMP
	Parallel Region
	Worksharing constructs
	Tasking construct
	Appendix
	Some examples

