
Toward HPC
Chapter 1 – A first take on parallelism

M1 – MSIAM
March 18, 2019



Top 500

2



Matrix Multiplication

a11 a12 . . . a1p

a21; a22; . . . a2p;

...
...

. . .
...

an1 an2 . . . anp





b11 b12; . . . b1q

b21 b22; . . . b2q

...
...

. . .
...

bp1 bp2; . . . bpq





c11 c12 . . . c1q

c21 c22; . . . c2q

...
...

. . .
...

cn1 cn2 . . . cnq





a 2
1
×
b 12

a 2
2
×
b 22

a 2
p
×
b p2

+

+ . . .+

3



Images

(i,j) (i+1,j)(i-1,j)

(i,j+1)

(i,j-1)

(i+1,j+1)

(i+1,j-1)

(i-1,j+1)

(i-1,j-1)

4



Graph

5



Organization



General information

Contact (course + labs)
Jean-Baptiste Keck: jean-baptiste.keck@univ-grenoble-alpes.fr
Office 124 – Imag Building – 1st floor
Email headers: [HPC]

Contact (labs)
Christophe Picard: christophe.picard@imag.fr
Office 174 – Imag Building – 1st floor

Class organization

ä Lectures and labs
ä Only one written exam, no project

6



Context

ä Decrease time to solution.
ä Solve larger problem.
ä Combine resources of several processing units: gain access to more

memory and more processing power.
ä Harness the processing power of modern architectures.
ä Use idle computer to perform embarrassing parallelism computation

(SETI@home).
ä Improve the precision of computations in a limited time (weather forecast).

7



Objectives

ä Understand the different level of parallelism.
ä Apprehend the concepts required for real-life applications.
ä Experiment with different tools of parallel computing.
ä Put into practice the theoretical concepts through an application.

8



Introduction



Legoland

9



Curie

10



Why HPC?

ä Sequential programming is limited
ä applications are parallel.
ä access to memory is limited.
ä engineering/cost limitations: it is easier to increase the number of unit that

the frequency of a processor.
ä Expectations for the applications are increasing

ä weather forecast
ä fluid-structure
ä CAD
ä big-data
ä cryptology

ä Performances are evolving
ä Hardware is faster.
ä Algorithms are more efficients.

11



Modeling and computation

Physical Phenomenon

Mathematical Model

Numerical ModelComputationnal Model

Implementation

Validation

12



Goals of HPC

Intensive computation

ä Solve a problem faster.
ä Models are more sophisticated.
ä Increase resolution of models.
ä Increase interactivity.

Example

ä Improve the rate: compute N problems simultaneously
=⇒ Run the same sequential program N times using different inputs.

ä Decrease response time: solve a problem with N times faster.
=⇒ The program is executed only once using N processes.

ä Increase the size of the problem: compute a problem N times larger.
=⇒ The program is executed only once combining N memory resources.

13



How to increase performances?

HPC attempts to speed solution by dividing task into sub-tasks and executing
simultaneously on different processing units.

ä Identify where parallelism will be the most effective.
ä Know the set of technological constraints.
ä Design solution adapted to the problem and the constraints.

14



Limitations of sequential solutions

Clock speed limitation

ä Current leakage.
ä Power consumption.
ä Heat dissipation.

 Not compatible with mobile devices

Standard optimisations

ä Instruction prefetching
ä Instruction reordering
ä Pipelined functions units
ä Branch prediction
ä Functional unit allocation
ä Hyperthreading


No control of the programmer

15



How to achieve parallelism

ä Processors: multicore, memory, network, accelerators, instructions.
ä Compilers: dedicated library, automatic parallelism.
ä Algorithms: tailored algorithms.
ä Mathematics: adapted numerical methods, evolutionary methods.

16



Parallel platforms



Parallel hierarchy

Sub-instruction

Instruction

Thread

Process

Program

17



Low-level hardware

A B

F D

R

18



Abstract processor

ALU Registers

64-bit data bus

Main Memory

19



Pipeline architecture

IF DE OP EX WB

IF DE OP EX WB

IF DE OP EX WB

IF DE OP EX WB

IF DE OP EX WB

20



Memory hierarchy

Register

Cache

Main memory

Background Memory

Archive Memory

Single access

Block access

Page access

Serial access

21



Flynn classification

ä SISD – Single Instruction, Single Data
ä SIMD – Single Instruction, Multiple Data
ä MISD – Multiple Instruction, Single Data
ä MIMD – Multiple Instruction, Multiple Data

Most modern architectures are based on MIMD principles.

22



Main architectures (1)

ä Multiple processing units: all the processing unit shares the same global
memory.

ä Scaling is complex from the algorithm point of view but also from the
technical point of view.

ä Intuitive programming since most of modern programming tools manage
memory accesses automatically.

ä Local programming
ä Cluster: aggregation of processing unit link through a high speed network.

Memories are locals and each unit has its own memory. There is no global
memory access.

ä Scaling only depends on the number of resources that are allocated to the
cluster.

ä Specific communication protocol must be used for the processors to interact.
ä Optimization of the ratio computation/communication requires careful

design.

23



Main architectures (2)

ä Hybrids: heterogeneous collection of processing unit with a level of
distributed memory. Each node can itself be a shared memory or a
distributed memory architecture.

ä Programming is hard: at least two parallel paradigms must be used
ä Optimisation is complex.
ä Performance gain is better.
ä Some resources must be virtualized.

24



Emerging architectures

ä Grid: heterogeneous processing unit link through low speed network
(LAN/WAN).

ä Low network
ä No administration required.
ä Only for applications having low network requirements (SETI@HOME)

ä Cloud: virtualization of hardware resources.
ä Low performances compared to standard architectures.
ä Cost effective for low usage.

25



Shared memory (1)

ä All the processors shares the same memory space. They communicate
using reading and writing shared variables.

ä Each processing unit carry out its task independently but modification of
shared variables are instantaneous.

ä Two kind of shared memories
ä SMP (Symmetric MultiProcessor) – All the processors share a link to the

memory. Access to the memory is uniform.

CPU CPU CPU CPU

MEMORY

26



Shared memory (2)

ä NUMA (NonUniform Memory Access) – All the processors can access to
the memory but not uniformly. Each processor has a preferred access to
some memory part.

CPU CPU CPU CPU

MEMORY

CPU CPU CPU CPU

MEMORY

CPU CPU CPU CPU

MEMORY

CPU CPU CPU CPU

MEMORY

ä Decrease the risk of bottleneck to memory access.
ä Local memory cache on each processor to mitigate the effect of non-uniform

access.

27



Distributed memory

ä Each processor has its own memory. There is no global memory space.
ä Each processor communicate with the others using messages.

ä Modification of variables are local and only the processor managing the
memory can access it.

ä Each processor work independently on its own set of variables.
ä The speed of the resolution depends on the architecture: network, topology,

processors.
ä Can scale easily.

CPU CPU CPU CPU

MEMORY MEMORY MEMORY MEMORY

INTERCONNECT NETWORK

28



Top 500

29



OpenMP

ä OpenMP (Open Multi-Processing) is an application programming interface
that supports shared memory multiprocessing programming

ä It is available for C, C++, and Fortran on most platforms
ä Provides a portable, scalable model that gives programmers a simple and

flexible interface for developing parallel applications
ä Works for platforms ranging from the standard desktop computer to the

multi-socket workstation / compute server.
ä OpenMP is an implementation of multithreading

ä A master thread forks a specified number of slave threads and the system
divides a task among them.

ä Parallel and critical sections are described by using compiler pragmas
directly in the code.

ä Requires specific compiler support (gcc 4.9 has support for OpenMP 4.0),
compile with -fopenmp flag.

ä We will use this standard for the labs.

30



Next. . .

Examples on shared memory

31


	Organization
	Introduction
	Parallel platforms

