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Organization



General information

Contact (course + labs)
Jean-Baptiste Keck: jean-baptiste.keck@univ-grenoble-alpes.fr
Office 124 – Imag Building – 1st floor
Email headers: [HPC]

Contact (labs)
Christophe Picard: christophe.picard@imag.fr
Office 174 – Imag Building – 1st floor

Class organization

ä Lectures and labs
ä Only one written exam, no project
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Context

ä Decrease time to solution.
ä Solve larger problem.
ä Combine resources of several processing units: gain access to more

memory and more processing power.
ä Harness the processing power of modern architectures.
ä Use idle computer to perform embarrassing parallelism computation

(SETI@home).
ä Improve the precision of computations in a limited time (weather forecast).
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Objectives

ä Understand the different level of parallelism.
ä Apprehend the concepts required for real-life applications.
ä Experiment with different tools of parallel computing.
ä Put into practice the theoretical concepts through an application.
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Why HPC?

ä Sequential programming is limited
ä applications are parallel.
ä access to memory is limited.
ä engineering/cost limitations: it is easier to increase the number of unit that

the frequency of a processor.
ä Expectations for the applications are increasing

ä weather forecast
ä fluid-structure
ä CAD
ä big-data
ä cryptology

ä Performances are evolving
ä Hardware is faster.
ä Algorithms are more efficients.
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Modeling and computation

Physical Phenomenon

Mathematical Model

Numerical ModelComputationnal Model

Implementation

Validation
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Goals of HPC

Intensive computation

ä Solve a problem faster.
ä Models are more sophisticated.
ä Increase resolution of models.
ä Increase interactivity.

Example

ä Improve the rate: compute N problems simultaneously
=⇒ Run the same sequential program N times using different inputs.

ä Decrease response time: solve a problem with N times faster.
=⇒ The program is executed only once using N processes.

ä Increase the size of the problem: compute a problem N times larger.
=⇒ The program is executed only once combining N memory resources.
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How to increase performances?

HPC attempts to speed solution by dividing task into sub-tasks and executing
simultaneously on different processing units.

ä Identify where parallelism will be the most effective.
ä Know the set of technological constraints.
ä Design solution adapted to the problem and the constraints.
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Limitations of sequential solutions

Clock speed limitation

ä Current leakage.
ä Power consumption.
ä Heat dissipation.

 Not compatible with mobile devices

Standard optimisations

ä Instruction prefetching
ä Instruction reordering
ä Pipelined functions units
ä Branch prediction
ä Functional unit allocation
ä Hyperthreading


No control of the programmer
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How to achieve parallelism

ä Processors: multicore, memory, network, accelerators, instructions.
ä Compilers: dedicated library, automatic parallelism.
ä Algorithms: tailored algorithms.
ä Mathematics: adapted numerical methods, evolutionary methods.
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Parallel platforms



Parallel hierarchy

Sub-instruction

Instruction

Thread

Process

Program
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Low-level hardware
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Abstract processor

ALU Registers

64-bit data bus

Main Memory
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Pipeline architecture

IF DE OP EX WB

IF DE OP EX WB

IF DE OP EX WB

IF DE OP EX WB

IF DE OP EX WB
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Memory hierarchy

Register

Cache

Main memory

Background Memory

Archive Memory

Single access

Block access

Page access

Serial access
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Flynn classification

ä SISD – Single Instruction, Single Data
ä SIMD – Single Instruction, Multiple Data
ä MISD – Multiple Instruction, Single Data
ä MIMD – Multiple Instruction, Multiple Data

Most modern architectures are based on MIMD principles.
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Main architectures (1)

ä Multiple processing units: all the processing unit shares the same global
memory.

ä Scaling is complex from the algorithm point of view but also from the
technical point of view.

ä Intuitive programming since most of modern programming tools manage
memory accesses automatically.

ä Local programming
ä Cluster: aggregation of processing unit link through a high speed network.

Memories are locals and each unit has its own memory. There is no global
memory access.

ä Scaling only depends on the number of resources that are allocated to the
cluster.

ä Specific communication protocol must be used for the processors to interact.
ä Optimization of the ratio computation/communication requires careful

design.
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Main architectures (2)

ä Hybrids: heterogeneous collection of processing unit with a level of
distributed memory. Each node can itself be a shared memory or a
distributed memory architecture.

ä Programming is hard: at least two parallel paradigms must be used
ä Optimisation is complex.
ä Performance gain is better.
ä Some resources must be virtualized.
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Emerging architectures

ä Grid: heterogeneous processing unit link through low speed network
(LAN/WAN).

ä Low network
ä No administration required.
ä Only for applications having low network requirements (SETI@HOME)

ä Cloud: virtualization of hardware resources.
ä Low performances compared to standard architectures.
ä Cost effective for low usage.
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Shared memory (1)

ä All the processors shares the same memory space. They communicate
using reading and writing shared variables.

ä Each processing unit carry out its task independently but modification of
shared variables are instantaneous.

ä Two kind of shared memories
ä SMP (Symmetric MultiProcessor) – All the processors share a link to the

memory. Access to the memory is uniform.

CPU CPU CPU CPU

MEMORY
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Shared memory (2)

ä NUMA (NonUniform Memory Access) – All the processors can access to
the memory but not uniformly. Each processor has a preferred access to
some memory part.

CPU CPU CPU CPU

MEMORY

CPU CPU CPU CPU

MEMORY

CPU CPU CPU CPU

MEMORY

CPU CPU CPU CPU

MEMORY

ä Decrease the risk of bottleneck to memory access.
ä Local memory cache on each processor to mitigate the effect of non-uniform

access.
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Distributed memory

ä Each processor has its own memory. There is no global memory space.
ä Each processor communicate with the others using messages.

ä Modification of variables are local and only the processor managing the
memory can access it.

ä Each processor work independently on its own set of variables.
ä The speed of the resolution depends on the architecture: network, topology,

processors.
ä Can scale easily.

CPU CPU CPU CPU

MEMORY MEMORY MEMORY MEMORY

INTERCONNECT NETWORK
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OpenMP

ä OpenMP (Open Multi-Processing) is an application programming interface
that supports shared memory multiprocessing programming

ä It is available for C, C++, and Fortran on most platforms
ä Provides a portable, scalable model that gives programmers a simple and

flexible interface for developing parallel applications
ä Works for platforms ranging from the standard desktop computer to the

multi-socket workstation / compute server.
ä OpenMP is an implementation of multithreading

ä A master thread forks a specified number of slave threads and the system
divides a task among them.

ä Parallel and critical sections are described by using compiler pragmas
directly in the code.

ä Requires specific compiler support (gcc 4.9 has support for OpenMP 4.0),
compile with -fopenmp flag.

ä We will use this standard for the labs.
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Next. . .

Examples on shared memory
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