
Université Grenoble Alpes 2018-2019
M1 MSIAM

Algorithms and software tools - C++
Lab 4

`

The purpose of this Lab is to define some classes and functions to help a banker manage the accounts of
his clients.

Exercise 1. Inheritance
Every banking account will be characterized by an identifier which is a number (an unsigned
integer) and it has a current balance (a real number). For every account, it will be possible to
perform the following operations: credit an amount of money, debit an amount of money, get the
identifier, and display the attributes of the account.
For every kind of account, crediting an amount of money simply corresponds to adding this
amount to the current balance.
Depending on the type of account, debiting an amount of money has a specific definition (see
below). In the most general class, we will consider in this Lab session that it simply corresponds
to removing this amount from the current balance.

There are two main types of banking accounts: current accounts and savings accounts.
- for current accounts, debiting an amount of money a is defined as follows: if the balance

is greater than a (i.e., there is enough money) then the debit is performed as expected, if
there is not enough money but the balance is positive then the account is debited from the
remaining balance, and finally if the balance is zero then no debit is possible. The
corresponding function will return the amount of money that has actually been debited.

- savings accounts have an additional attribute which is the interest rate. There are two
types of savings accounts, which have specific interest rates: blocked accounts and
unblocked accounts. For blocked accounts, the interest rate IRATEBLOCKED is 4%,
and for unblocked accounts, the interest rate IRATEUNBLOCKED is 2%. For every
savings account, it will be possible to add interests to the current balance.
It is impossible to debit blocked accounts (a specific code -1 will be used as returned
value). Debiting unblocked accounts of an amount of money a is defined as follows: if the
balance is greater than a (i.e., there is enough money) then the debit is performed as
expected, otherwise no debit is possible. The function still returns the amount of money
that has actually been debited.

1. What will be the class hierarchy to describe those different types of accounts?
Knowing that we want to give the possibility to directly access the value of the balance, from any
method of any of these classes, which data/methods will be private, protected, public in the
most general class?

2. Knowing also that we want to give the possibility to get the identifier (i.e. number) of any kind
of account acc using the syntax acc(), write a file account.h that contains:
- the definition of the two macros IRATEBLOCKED with value 4, and IRATEUNBLOCKED with
value 2
- the declarations of the classes specified above. In particular we must have, among the
methods of the most general class Account:
 void credit(double a); // credits the amount of money a
 double debit(double a); // debits the amount of money a
 void print(ostream &o); // displays the attributes of the account on ostream o

3. Write the file account.cpp that contains the definitions of the methods of those classes.

Exercise 2. Aggregation, overloading
Now we consider a characterization of the clients. In this Lab session, every client will be
characterized by his name (a string), his identifier (an unsigned integer), a pointer to a current

account, and a pointer to an unblocked savings account (those pointers will be null if the client
does not have the corresponding type of account).
It will be possible to: get his identifier, credit his current account of an amount of money a, credit
his savings account of an amount of money a, try to debit his current account of an amount of
money a, try to debit his savings account of an amount of money a, and display his attributes
(including the attributes of his accounts) by means of the stream insertion operator <<

1. Write a file client.h that contains the declaration of this class Client.

2. Write the file client.cpp that contains the definitions of the methods of this class.

Exercise 3. Collection
A bank is characterized by a collection of clients. An attribute of type "map" will be used to
model this collection. A map is an associative container of the STL that enables to associate
data with keys (http://www.cplusplus.com/reference/map/map/), see a brief exemplified
description in the Appendix. Elements are automatically sorted according to the keys.
Here the data stored in the map will be pointers to Clients, and the key associated with each
client will be his identifier. A method InsertClient will give the possibility to insert an existing
client into this map.
Here too, we will give the possibility to display the attributes of instances of bank by means of
the stream insertion operator <<

1. Give the declaration of this class Bank, and the definitions of the methods and functions.

2. Write a main function that creates and modifies instances of bank accounts, creates
instances of Client, insert them in an instance of Bank, modifies, and prints them.

Appendix. template < class Key, class T > class map;

Maps are associative containers that store elements formed by a combination of a key value (of
type Key) and a mapped value (of type T), following a specific order. In a map, the key values
are generally used to sort and uniquely identify the elements, while the mapped values store the
content associated to this key.
When you dereference an iterator over the map class, you get a "pair", which essentially has
two members, first and second. First corresponds to the key, second to the value.
There are several ways to access the elements of a map. You can simply treat the map like a
normal array and use brackets.

Example (http://www.yolinux.com/TUTORIALS/CppStlMultiMap.html) :

