C++ lab 3

Recap of few concepts you used during the third lab:

1. Operator overloading

e In C++ it is possible to change the way operator works for all user-defined types.

e You can overload any of the following 45 common operators:

Common operators
assignment | increment | arithmetic | logical comparison access | other

a =b ++a +a la a == a[b] a(...)
a+=>b --a -a a&& o al=»o *a a, b
a-=> a++ a+hb allob a<b &a
a *=b> a—- a-»b a>b a->b
a/=b a*b a<=b a->*b
a%=b a/b a>ob
a &= b a%b
al=b ~a a<=>b
a"=b a&hb (since C++20)
a<«=b alb
a»b a~b

a<hb

a>b

e You cannot define new operators such as **, <> or &|.
e Operator precedence is unaffected by operator overloading.
e Some operators have to be implemented as member functions: a=b, a(...), a[b], a->b, a->*b

o Example of operator[] as a member function:

class A {
public:
A(int size) { this—>data = new float [size]; }
~A() { delete[] this—>data; }
float operator[](int i)

const { return this—>data[i]; }
float& operator [](int i) { return this—>data[i]; }
private:

float* data;

I

int main() {
A a(2);
a.operator [](0) = 1.0f;
a[l] = 3.14%;

}

e All other operators can be either implemented as member or non-member functions.

o Example of operator+ as a member function:

struct B {
int val;
B(int val) { this—>val = val; }
B operator+(const B& rhs) const { return B(this—>val + rhs.val); }

}s
int main() {

B b0(1), bl(2);

B b2 = b0 + bl; * same as B b2 b0.operator+(bl) =x
}

https://en.cppreference.com/w/cpp/language/operators
https://en.cppreference.com/w/cpp/language/operator_precedence

o Example of operator+ as a non-member function:

struct B {
int val;
B(int val) { this—>val = val; }
I
B operator+(const B& lhs, const B& rhs) { return B(lhs.val + rhs.val); }
int main() {
B b0(1), bl(2);
B b2 = b0 + bl; /* same as B b2 = operator+(b0, bl)

}

o Of course if you define those two functions at once, the operator overload will become ambiguous, and
compilation will fail (the compiler cannot decide wich one to call).

e However sometimes you won’t have the choice because for binary operators, a op b will call a.operator(b)
and you can not modify the type of a.

o For example, this will not work:

#include <iostream>
struct C {
std :: ostream& operator <<(std::ostreamé& os) {
os << "C::operator<<";
return os;
}
s
int main() { // this will not compile !
C c;
std :: cout << c;
/* The compiler will look for the definition of one of the following operators: x
* std :: ostream :: operator <<(const C&) [member function of std::ostream]
* operator <<(std ::ostream&, const C&) [non—member function] x /

}

o Because you can not add a member function to the type std::ostream (it is a type defined in the
standard library!) you will have to define the non-member function.

o Of course instead of calling (std::cout << c) you could break everything and call (¢ << std::cout)
which would call C: :operator<<(std::ostream& os) which is the member function of class C that
we defined ! This wouln’t be consistent with the usual (i.e. expected) behaviour of operator<< with
an std::ostream as input so this is a bad practice.

o Thus the correct ways of implementing operator: :<< to write to the standard output is always the
implementation of a non-member operator<<:

#include <iostream>
struct C {

/* nothing there
}s

std :: ostream& operator <<(std ::ostream& os, const C& c) {
os << "C::operator<<";
return os;

}

int main() { // this will work !
C c;
std :: cout << c;

}

e The standard put no constraints on what most of the overloaded operators do, or on the return type, but
in general, overloaded operators are expected to behave as similar as possible to the built-in operator.

e Sometimes when you implement one operator you get some others implicitly for free:

o Since C++20, when you define the spaceship operator<=> you get all the comparisson operators
(operator::7 operator!=, operator<, operator>, operator>= and operator<:).

https://en.cppreference.com/w/cpp/language/operator_comparison#Three-way_comparison

Signed and unsigned integers

A signed integer can represent both positive and negative numbers.
An unsigned integer can only store positive numbers.
The only fundamental integer type is int, but you can alter its size and signedness with type modifiers.
Signedness type modifiers:
o signed-target type will have signed representation (this is the default if omitted).
o unsigned-target type will have unsigned representation.
o This means unless unsigned is specified, all integers are signed by default:

int i; signed integer
signed int j; signed integer
unsigned int k; unsigned integer

Size type modifiers :
o short-target type will be optimized for space and will have width of at least 16 bits.
o long-target type will have width of at least 32 bits.
o long long-target type will have width of at least 64 bits, since C++11.

The keyword int may be omitted if any of the modifiers is used:
short i; same as short int
unsigned long j; same as unsigned long int
signed k; same as int

There also three fundamental character types char, signed char and unsigned char which all are one
byte size and can be used for integer arithmetic. Note that unlike int, the char type is distinct from the
signed char type and the signedness of char depends on the compiler and the target platform.
Depending on the target architecture all those types may have different sizes:

o You can get the underlying type size in bytes by using the sizeof operator.

o You can get the number of bits per byte by using the constant CHAR_BIT defined in <climits>.

o On most modern architectures you can assume 1 byte = 8 bits (i.e CHAR_BIT=8).

o The only guarantees given by the standard are:

1 = sizeof (char) < sizeof (short) < sizeof(int) < sizeof(long) < sizeof(long long)

CHAR_BIT*sizeof (short) > 16 bits
CHAR_BIT*sizeof (int) > 16 bits
CHAR_BIT*sizeof (long) > 32 bits

CHAR_BIT*sizeof (long long) > 64 bits (since C++11)
To solve this problem, since C++11 you can use fixed width integer types with the header <cstdint>:
o int8_t, int16_t, int32_t and int64_t for signed integers (8, 16, 32 and 64 bits).
o uint8_t, uint16_t, uint32_t and uint64_t for unsigned integers.
Given an integer spanning on p bits:
o The unsigned integer can represent values from 0 to +2P — 1.
o The C++ standard allows any signed integer representation, but the majority of modern architectures
use the two’s complement representation. In this case it can represent values from —2P~1 to +2P71 — 1.
o There is also another representation which was used in early architectures called the one’s complement.
In this case the signed integer can represent values from —2P~1 — 1 to +-2P~1 — 1.

On a 64-bit architecture like on the school computers, you should get the following integer sizes:
Size Unsigned Signed
Type bits | min value max value min value max value
char 8 0 255 -128 +127
short 16 0 65,535 -32,768 +32,767
int / long | 32 0 4,294,967,295 -2,147,483,648 +2,147,483,647
long long | 64 0 18,446,744,073,709,551,615 | -9,223,372,036,854,775,808 | +9,223,372,036,854,775,807

Integer arithmetic is defined differently for the signed and unsigned integer types:
o Unsigned integer arithmetic is always performed modulo 2P where p is is the number of bits of the type.
o Signed integer arithmetic has undefined behavior when the operation overflows (when the result
does not fit in the result type), i.e. the compiled program is not required to do anything meaningful.

https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/types/integer
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Ones%27_complement
https://en.wikipedia.org/wiki/Undefined_behavior

3. A gentle introduction to template metaprogramming

e Function templates are special functions that can operate with generic types. This allows us to create a
function template whose functionality can be adapted to more than one type or class without repeating
the entire code for each type.

template <typename T>
T max(T a, T b) {

}

int

return (a>b ? a : b);

main () {
float a=0.5f, b=2.5f;
int ¢=0, d=1;

max<float >(a,b); /* ok, returns 2.5f =%/
max<int >(a,b); /x ok, returns 2

()k N returns I * /”
ok, returns 1.0f x/

max<int >(c,d);
max<float >(c,d);

max<float >(a,d); /* ok, returns 1.0f =/
max<int >(b,d); /* ok, returns 2 */
max(a,b); /* ok, T is deduced to be float, returns 2.5f x/
max(c,d); /% ok, T is deduced to be int, returns 1 */

max(a,d);
/* This one will not work:
template argument deduction/substitution failed:

deduced conflicting types for parameter 'T'' ('float'

and 'int')

e We have also the possibility to write class templates , so that a class can have members that use template
parameters as types.

template <typename T>
struct Point {

}s

T x, y;

Point (T x, T y)
this—>x = x;
this—>y = y;

{

}

Point operator+(const Point& other) const;

template <typename T>
Point<T> Point<T>::operator+(const Point& other) const {

}

return Point<T>(this—>x + other.x, this—>y + other.y);

int main() {

Point<int> p0(4, 6), pl(2, 3);
Point<int> p2 = p0 + pl;

Point<float> p3(1.0f, 3.14f), pd(1.0f, 0.0f);
Point<float> p5 = p3 + p4;

Point<int> p6 = p0 + p3; /* this expression will not compile

there

is

no

such

operator

Note that Point<float> is not the same type as Point<int>. You cannot create an C-array of Point
that would store Point<int> and Point<float> at the same time (because Point is not a type but a class

template).

* /

/

http://www.cplusplus.com/doc/oldtutorial/templates/
http://www.cplusplus.com/doc/oldtutorial/templates/

e You can also mix the concepts of class templates and function templates. For example if you wanted to
define an generic operator+ between a Point and a Point as a member function you could implement
this as the following:

template <typename T>

class Point { /#* previous implementation of Point
template <typename U>
Point<T> operator+(const Point<U>& other);

i

template <typename T>

template <typename U>

Point<T> Point<I>::operator+(const Point<U>& other) const {
return Point<T>(this—>x + other.x, this—>y + other.y);

}

/* now the expression 'Point<int> p6 = p0 + p3;' would work x/

e If you want to define a different implementation for a template when a specific type is passed as template
parameter, you can declare a specialization of that template.

template <typename T>
T max(T a, T b) { return (a>b ? a : b); }

explicit specialization of max<I> for T = int =*/
template <>
int max(int a, int b) { return 42; }

int main() {
float a=0.5f, b=2.5f;
int ¢=0, d=1;

max(a,b); /% ok, returns 2.5f
max(c,d);

ok, returns 42

e There no real difference between a fully specialized template function and a non-template regular function
other than the fact that when the compiler looks for a matching signature type for the function call, it
will first pick a non-template function that matches the required signature before trying to instantiating
any available template functions that may fulfill the required signature match.

template <typename T>
T max(T a, T b) { return (a>b ? a : b); }

explicit specialization of max<I> for T int
template <>
int max(int a, int b) { return 42; }

/+* non—template function declaration =/
int max(int a, int b) { return 43; }

int main() {
float a=0.5f, b=2.5f;
int ¢=0, d=1;

max(a,b); /* ok, implicit call to max<float >, returns 2.5f x/
max(c,d); /* ok, returns 43 x/
max<int >(c,d); /# ok, explicit call to max<int >, returns 42

e Because templates are only compiled when required, this forces a restriction for multi-file projects: the
implementation (definition) of a template class or function must be in the same file as its
declaration. That means that you cannot separate the interface in a separate header file, and that you
must include both interface and implementation in any file that uses the templates.

. Shared libraries

A dynamic library (also called a shared library) consists of routines that are loaded into your application at
run time. When you compile a program that uses a dynamic library, the library does not become part
of your executable. On Windows, dynamic libraries typically have a .d11 (dynamic link library)
extension, whereas on Linux, dynamic libraries typically have a .so (shared object) extension.

Three steps to compile and link your code with a dynamic library on linux:

1. Make sure the compiler knows where to look for the header file(s) for the library. As usual you just
add a directory to the list of places the compiler looks for headers (*.h files) with the -I option.

2. Make sure the linker knows where to look for the library file(s). In fact you just add a directory to the
list of places the linker looks for libraries (*.so files) with the -L option.

3. Tell the linker which library files to link with the -1 option.
If your library file is named 1ibXYZ.so just use -1XYZ.

In the Makefile you can use the CXXFLAGS and LDFLAGS environment variables as seen in the first lab:

o Modify CXXFLAGS to include -I[path to library headers].
o Modify LDFLAGS to include -L[path to library files] -1[library name].
o Compile a source file to an object file:
${CXX} ${CXXFLAGS} -c [source.cpp] -o [target.o]
o Link objects to create a binary:
${CXX} ${LDFLAGS} [filel.o] [file2.0] ... -o [binary_name]

How to run the resulting executable (on linux):

o You are not done yet, because the shared library is not part of your executable. The operating system
has to find the dynamic library files your executable depend on to load the library code in memory
prior to your code.

o The operating system will only look to standard system directories like /1ib, /usr/1lib and other
directories configured in /etc/1d.so.conf and /etc/1ld.so.conf.d. You can list all known dynamic
libraries by using the command ldconfig -p in a terminal.

o It is possible to look at the dependencies of your executable by using the command 1dd [your
executable name]. If you use this tool on exercicel you may find something like 1ibBigInt.so =>
not found, which is normal because 1ibBigInt.so in not located in a standard system directory.

o The environment variable LD_LIBRARY_PATH is consulted at time of execution, to provide a list of
additional directories in which to search for dynamically linkable libraries.

o For exercice 1, this would work: LD_LIBRARY_PATH=[path to libBigInt.so] ./bin/exl_factorial

e How to hardcode the library path in your executable to get rid of LD_LIBRARY_PATH 7

o This can be done by specifying a runtime path as a linker option.
o Basically in your Makefile, you should just add the following to your linker flags:
LDFLAGS+=-W1,rpath=[path to library files].

e How to create a shared library ?

o Basically a library is just a grouping of object files (*.0) where the main function has not been defined.
o To create a shared library with g++, just use the following command:
g++ -shared [filel.o] [file2.0] ... -o libTest.so
o Example with the big integer library:
1. Get the source code by using the following command (you need git):
git clone https://mattmccutchen.net/bigint/bigint.git
cd bigint
2. Compile all implementation files *. cpp to object files *.o:
for £ in $(1s *.cc); do g++ —-fPIC -c $f; done;
3. Create the library:
g++ -shared Bigx.o -o 1libBiglInt.so

https://stackoverflow.com/questions/6562403/i-dont-understand-wl-rpath-wl

	C++ lab 3
	Recap of few concepts you used during the third lab:

