
C++ lab 2

Recap of what you should have learned during the second lab:

1. Dynamic memory allocations

• Use the new operator to allocate dynamically a unique object of a given type. With this operator you can
also directly call any of the constructor of the object:
◦ int* val = new int;
◦ PPoint* point = new PPoint(1,5);

• Use the new[] operator to allocate dynamically an array of objects of a given type. With this operator
you cannot call the constructor of the objects, the type have to be default-constructible:
◦ int* values = new int[size];
◦ PPoint* points = new PPoints[size];

• For every call to new you should have a matching call to delete to free allocated memory.
• Similarly, for every call to new[] you should have a matching call to delete[].
• If new and delete operator do not match, it will result in an undefined behaviour.
• Do not forget to implement a destructor that frees memory for each class that dynamically allocates
memory in its constructors.

• Copying a pointer will not copy the pointed object(s) ! To copy the pointed object(s) you need to
dynamically allocate a new array and use functions like memcpy or strcpy to copy the array contents.

• This is why you have to pay attention to define a custom copy-constructor (and as we will see later, a
custom operator=). The default copy-constructor will just copy the pointers.

• Freeing two times the same pointer will lead to a segfault and crash your program.
• You can check all memory leaks in your program by using the valgrind tool:

◦ valgrind --leak-check=full [program] [arguments]

1

2. Pass by value vs pass by reference

• When you pass an argument by value, is is copied using the copy-constructor prior to the function call:
i n t durat ion (Date d0 , Date d1) { /∗ implementation ∗/ } ;
Date date0 , date1 ;
durat ion (date0 , date1) ;

is equivalent to the inlined function:
Date date0 , date1 ;
{

Date d0 (date0) ; // copy−c o n s t r u c t o r o f Date
Date d1 (date1) ; // (the whole o b j e c t i s cop ied)
/∗ implementation ∗/

}

• When you pass an address by using a pointer, you pass the pointer by value:
i n t durat ion (Date∗ d0 , Date∗ d1) { /∗ implementation ∗/ } ;
Date date0 , date1 ;
Date∗ date0_ptr = &date0 ;
Date∗ date1_ptr = &date1 ;
durat ion (date0_ptr , date1_ptr) ;

is equivalent to the inlined function:
Date date0 , date1 ;
Date∗ date0_ptr = &date0 ;
Date∗ date1_ptr = &date1 ;
{

Date∗ d0 (date0_ptr) ; // copy−c o n s t r u c t o r o f Date∗
Date∗ d1 (date1_ptr) ; // (only the memory address i s cop ied)
/∗ implementation ∗/

}

• As opposed to pure C, C++ offers pass-by-reference capabilities:
i n t durat ion (Date& d0 , Date& d1) { /∗ implementation ∗/ } ;
Date date0 , date1 ;
durat ion (date0 , date1) ;

is equivalent to the inlined function:
Date date0 , date1 ;
{

Date& d0 (date0) ; // c o n s t r u c t o r Date&(Date)
Date& d1 (date1) ; // (no copy)
/∗ implementation ∗/

}

This acts as if you passed the arguments by address but without the pointer notations.

• The type of the reference is the name of the type followed by &.
• For raw C arrays you can only use pointers.

2

3. Const correctness
• const correctness means using the keyword const to prevent constant objects from getting mutated.
• Example of pass-by-pointer-to-const:

i n t durat ion (const Date∗ d0 , const Date∗ d1) { /∗ implementation ∗/ } ;

• Example of pass-by-reference-to-const:
i n t durat ion (const Date& d0 , const Date& d1) { /∗ implementation ∗/ } ;

• You can always cast a non-const object to a const object whenever you want.
• You cannot convert directly a const-reference to a reference.
• You cannot convert directly a pointer-to-const to a pointer-to-non-const.
• It is possible with the const_cast operator but modifying a const object through a non-const access
leads to undefined behaviour.

• How to declare that a member function will not modify the current object ?
c l a s s Date{

p r i v a t e :
i n t day , month , year ;

p u b l i c :
i n t get_day () {

// Here t h i s i s o f type ' Date ∗ '
r e turn th i s −>day ;

} ;
} ;

The class method get_day is equivalent to the external function:
i n t get_day (Date∗ t h i s) ;

and we would like to declare that this is a pointer to a constant Date object:
i n t get_day (const Date∗ t h i s) ;

This can be done by adding the const keyword after the method signature:
c l a s s Date{

p r i v a t e :
i n t day , month , year ;

p u b l i c :
i n t get_day () const {

// Here t h i s i s o f type ' const Date ∗ '
r e turn th i s −>day ;

} ;
} ;

4. Documenting your code
• You can use a documentation generator like doxygen to generate a documentation for your code.
• Code that you wrote 6 months ago is often indistinguishable from code that someone else has written.
• See the exercice1 for an overview of doxygen capabilities (use make html).

5. Miscellaneous
• The C header <cstring> defines strcpy and memcpy.
• You can get the size of a type or object in bytes by using the sizeof operator.
• To generate random integer values you can use:

◦ std::rand() defined in the C header <cstdlib>.
◦ Do not forget to use std::srand() to initialize the random seed in your main function.

• To check if a floating point number is a NaN you can use:
◦ val==val will return False if and only if val is a NaN.
◦ std::isnan(val) defined in the C header <cmath>.

• Add the -g compiler option to your CXXFLAGS variable to debug your program. It will give you the
exact file and line causing the problem in valgrind and gdb.

3

	C++ lab 2
	Recap of what you should have learned during the second lab:

