
Université Grenoble Alpes 2018-2019
M1 MSIAM

Algorithms and software tools - C++
Lab 2

Exercise 1. Extension of exercises 1 and 2 of Lab 1…

1. Modify the class Date so that it has an additional attribute which is a char * that stores the day
of the week ("Monday", "Tuesday",…). Create a copy constructor and a destructor for this class
(use functions strlen and strcpy).

2. Modify the independent functions before, difference and duration so that they use pass-by-
reference parameters (instead of pass-by-value).

3. Adapt the entire application accordingly* and compare the creation of objects in the case of
pass-by-reference and in the case of pass-by-value.

Exercise 2.
1. Define a class PPoint that has as attributes two pointers to integer x and y (coordinates of the
point). Create a constructor that takes as arguments two integers used to initialize the
coordinates.

2. Create a copy constructor and a destructor for this class.

3. Create a method add that adds a PPoint p to the current point, and a method print that prints
the point.

4. Define a class Array_of_PPoint that has as attributes: a dynamic array of PPoint, and an
unsigned integer that represents the length of this array. Create a constructor that takes as
arguments an unsigned integer len and that allocates memory for an array of length len. Do you
need to modify something regarding the constructor(s) of class PPoint? What and why? **

5. Create a method add of Array_of_PPoint that adds a PPoint p to every element of the array,
and a method print_tab to print the content of the array.

6. If the copy constructor and the destructor print messages on the screen (for instance "Calling
copy constructor" and "Calling destructor" respectively), how many messages will be printed
when executing the following main function, according to your definition of add?

int main(){
 Array_of_PPoint a(4);
 PPoint p(2,6);
 a.add(p);
 a.print_tab();
 return 0;
}

7. Start documenting your code using the conventions of the Doxgen tool (see
http://www.doxygen.nl/).
Then add a target doc to your Makefile in order to generate the documentation in a doc/
directory.

* We do not really care about the realism of the solution as to the real calendar, the objective of this exercise is just to
"play" with a dynamic attribute. If you feel confortable, you can implement a realistic solution thanks to function
mktime (see here : http://www.cplusplus.com/reference/ctime/mktime/)
** Note. To become familiar with rand(), you can use it to initialize points randomly, for instance in [[0,5]] x [[0,5]]

Exercise 3. Extension of exercise 4 of Lab 1…

1. Define a class PiecewicePoly1 that has as attributes:
 - an unsigned integer npoints which represents the number of points to be interpolated
 - a dynamic array of floats Xi which represents an strictly ordered array of x coordinates
 - a dynamic array of floats Yi which represents the values at point Xi: Yi = F(Xi)
 - a dynamic array polys of Poly1 (polynomials of degree 1) that will interpolate points (Xi, Yi)
2. Define a constructor:
 PiecewisePoly1(const float *Xi, const float *Yi, unsigned int npoints);
that:
 - checks that npoints is at least 2
 - checks that Xi and Yi do not contain any NaN values
 - checks that Xi[i] < Xi[i+1] for all i in [[0, npoints-2]]
 - allocates and copy Xi (use memcpy defined in <cstring>)
 - allocates and copy Yi
 - allocates polys, an array of (npoints-1) Poly1
 - initializes all polynomials such that they interpolate the points given as input:
 If Pi = polys[i], Xl = X[i], Xr = X[i+1], Yl = Y[i], Yr = Y[i+1]
 We have:
 Pi(Xl) = Yl
 Pi(Xr) = Yr
 Which is enough to determine the two coefficients of each polynomial.

3. Define a destructor.

4. Define float xmin() and float xmax() that return Xi[0] and Xi[npoints-1].

5. Define a method float val(x) that:
 - returns Yi[0] if x < xmin()
 - returns Yi[npoints-1] if x >= xmax()
 - returns poly[i].val(x) if Xi[i] <= x < Xi[i+1]

6. Define a method void dump(std::ostream& os, unsigned int N) that evaluates the piecewise
polynomial between xmin() and xmax() on N points.
This method should dump a point per line in the format: x val(x)
 os << x << '\t' << val(x) << std::endl;

7. Define a main that declares and initializes two static arrays Xi and Yi of a given size npoints.
Create a PiecewisePoly1(Xi, Yi, npoints) and use the dump method for 100 points (use std::cout
as ostream).

8. Use the following command in a terminal to plot the result (where ./bin/ex3_poly is your
executable):
 ./bin/ex3_poly | gnuplot -p -e "plot '<cat' with points"

