
C++ lab 1

Recap of what you should have learned during the first lab:

1. Makefile
• all is the default Makefile target.
• How to define Makefile rules.
• Default unix environment variables:

◦ CXX: C++ compiler
◦ CXXFLAGS: C++ compiler flags
◦ LDFLAGS: Linker flags (was not required for this lab)

• How to affect a value to a Makefile variable:
◦ := means affect to
◦ ?= means affect if not already defined
◦ += means concatenate (and define if not already defined)

• Default rules variables:
◦ $<: Contains first dependency name
◦ $ˆ: Contains all dependency names
◦ $@: Contains target name

• You can define generic rules that match patterns by using %.
• Makefile functions wildcard and pathsubst.
• You can change file extensions with ${varname:.ext1,.ext2}.
• .PHONY rules are always executed.

2. C++ compiler
• There exist many different C++ compilers like g++ and clang++.
• And supported C++ standards (C++98, C++03, C++11, C++14, C++17, . . .).
• Compile a C++ source file to an object:

${CXX} ${CXXFLAGS} -c [source.cpp] -o [target.o]
• Link objects to create a binary:

${CXX} ${LDFLAGS} [file1.o] [file2.o] ... -o [binary_name]
• Some compiler options:

◦ -std=c++14: Enables the C++14 standard.
◦ -pedantic: Disable all non standard compiler features.
◦ -Wall: Enables some warnings.
◦ -Wextra: Enables even more warnings.
◦ -Werror: Converts all warnings to errors.
◦ -W[name]: Enables a specific warning.
◦ -Wno-[name]: Disables a specific warning.
◦ -I[folder]: Add this folder as an include directory to look for header files.

• You can apply the C preprocessor to your code to see what happens before actual compilation by
using the -E option of gcc: g++ ${CXXFLAGS} -E [filename]

3. C++ headers
• Often have extension .h, .H or .hpp.
• Contains function prototypes and class definitions.
• Should be guarded by an include guard.
• Should not contain using namespace [name] in the global namespace (namespace pollution).
• System libraries are included with the #include <file> syntax (no .h extension).
• Our headers should be included with the #include "file.h" syntax.
• #include is just basic C preprocessor directive that will resursively copy and paste headers into
your code.

• You can specify default arguments to function and class methods.
• Including a C library like "time.h" and "stdio.h" is deprecated in C++.
• C standard libraries are hidden in specific C++ headers like <ctime> and <cstdio>.

1

4. C++ sources
• Often have extension .cpp or .C.
• Contains function and class implementation.
• In a class method implementation, this represents a pointer to self.
• Here you can use things like using namespace std without any side effects.

5. Basic class understanding
• Class members and methods.
• Public and private visibility.
• In C++ struct and class are basically the same, the only difference is:

◦ All members contained in a class are by default private.
◦ All members contained in a struct are by default public.

• Constructors:
◦ Constructors are named as the typename and have no return type in their declaration.
◦ A default constructor is a constructor which can be called without arguments:

− Date();
− Date(day=1, month=1, year=1900);

◦ Initializer list: Unless all class members have a default constructor, you have to initialize them
through the initializer list. It is always more efficient to initialize members directly with this
method.
− Date(int day, int month, int year): m_day(day), m_month(month), m_year(year) {

/* insert code to check if date is valid here */ }
− Trip(Date start, Date end): m_start(start), m_end(end) {}

◦ A copy constructor is a constructor that take a reference to the same type as a parameter.
− Date(Date& d);
− Trip(const Trip& t);
− A copy constructor is required by m_start(start) and m_end(end) in the second initializer

list example.
− Do not worry about type cv-qualifier const and reference & yet, we will see what it means later.

◦ Implicit constructors:
− Unless any constructor is defined, an object defines an implicit default constructor.
− Unless explicitely asked, an object also defines an implicit copy constructor.
− We will see later that even more implicit methods are automatically generated if not removed.

• To create an object of a given type without arguments the type has to be default-constructible.
Default constructible means it should have a public default-constructor.
◦ Date d0, d1; /* requires that Date is default-constructible */
◦ Date d0(1,1,1970), d1(1,12,1970); /* requires public Date(int, int, int) */

• This is also true for static arrays:
◦ Date dates[2]; /* requires that Date is default-constructible */
◦ Date dates[2] = {Date(1,1,1970), Date(1,12,1970)}; /* public Date(int,int,int) */

6. Miscellaneous
• You should be up to date with basic C pointers syntax (&, *, ->).
• int main(int argc, const char *argv[]) is the entry point of your program:

◦ It returns an error code as an integer.
◦ argc contains the number of arguments passed to your program.
◦ The first argument is the name of the program itself.
◦ argv contains all the passed arguments as an array of arrays of characters (argv is a char**).

• Use std::cout, std::cerr and std::endl defined in header <iostream> to print to the screen.
• Use std::setprecision, std::setfill and std::setw defined in <iomanip> to change how things
are printed.

• The C header <cstdlib> defines:
◦ EXIT_SUCCESS and EXIT_FAILURE macros.
◦ The atoi function that converts an array of characters to an integer.

• The C header <cstring> defines strcpy.
• The C header <cassert> defines assert.

2

	C++ lab 1
	Recap of what you should have learned during the first lab:

