
Université Grenoble Alpes 2018-2019
M1 MSIAM

Algorithms and software tools - C++
Lab 1

Exercise 1. Extension of the lecture exercise (Date)…

1. Define a class Date, with 3 integer attributes: day, month, year.
- Create a constructor with 3 parameters. Check that the parameters represent a correct date,
otherwise use the Unix Epoch (1 January 1970).
- Create a second constructor that takes as parameter a variable of type time_t (as it can be
returned by time, see below). The constructor initializes the attributes using the fields tm_mday,
tm_mon and tm_year of the struct tm returned by localtime (see below).
- Write a method print_date to print the date. In this method, use a switch statement to convert
the month (int) into the corresponding char* (1 ! "Jan", 2 ! "Feb", 3 ! "Mar",…).

2. Define a function main that creates an instance of Date using the current time (second
constructor), and prints it. Check that your methods work properly.

3. Write a method happy_birthday that receives as parameters a name n and a date b (the day
of birth of n) and that wishes an happy birthday to n if the date equals his/her birthday, and also
prints his/her age.

4. Define a function main that enables the generated command to receive 4 parameters which
are a name and the day, month and year of his/her birth. It creates a Date that corresponds to
today, and wishes an happy birthday to the specified person if this date is his/her birthday.
Do not forget to check that the command receives the expected number of parameters!
Here are example executions:

$../bin/ex1_date Nestor
Wrong number of arguments: ../bin/ex1_date name day month year
$../bin/ex1_date Nestor 25 9 1995
Happy birthday Nestor! You are 23 years old

5. Organize your files as described to the right, and
write the associated Makefile. Note that the executable
will be generated in directory bin.

TIME(2) Linux Programmer's Manual TIME(2)

NAME
 time - get time in seconds

SYNOPSIS
 #include <time.h>

 time_t time(time_t *t);

DESCRIPTION
 time() returns the time as the number of seconds since the Epoch,
 1970-01-01 00:00:00 +0000 (UTC).
 If t is non-NULL, the return value is also stored in the memory pointed to by t.

exercise1(

bin(
include(src(

date.h(

date.cpp(

main.cpp(
Makefile((

RETURN VALUE
 On success, the value of time in seconds since the Epoch is returned.
 On error, ((time_t) -1) is returned, and errno is set appropriately.

LOCALTIME(3) Linux Programmer's Manual LOCALTIME(3)

NAME
 localtime - transform date and time to broken-down time

SYNOPSIS
 #include <time.h>

 struct tm *localtime(const time_t *timep);

DESCRIPTION
 The localtime() function takes an argument of data type time_t,
 which represents calendar time. When interpreted as an absolute
 time value, it represents the number of seconds elapsed since the
 Epoch, 1970-01-01 00:00:00 +0000 (UTC).

 Broken-down time is stored in the structure tm, which is defined in
 <time.h> as follows:
 struct tm {
 int tm_sec; /* Seconds (0-60) */
 int tm_min; /* Minutes (0-59) */
 int tm_hour; /* Hours (0-23) */
 int tm_mday; /* Day of the month (1-31) */
 int tm_mon; /* Month (0-11) */
 int tm_year; /* Year - 1900 */
 int tm_wday; /* Day of the week (0-6, Sunday = 0) */
 int tm_yday; /* Day in the year (0-365, 1 Jan = 0) */
 int tm_isdst; /* Daylight saving time */
 };

 The members of the tm structure are:
 ...
 tm_mday The day of the month, in the range 1 to 31.
 tm_mon The number of months since January, in the range 0 to 11.
 tm_year The number of years since 1900.

 The localtime() function converts the calendar time timep to broken-down time
 representation, expressed relative to the user's specified timezone.

Exercise 2. Extension of the lecture exercise (Trip)…

1. Define a class Trip, with 3 attributes: beginning and end dates of the trip, and price (float).
- Create a constructor with 7 parameters: day, month, and year of the beginning date, day,
month, and year of the end date, and price.
- Create a second constructor with 3 parameters: beginning and end dates, and price.
- Write a method print_trip to print the characteristics of the trip.

2. Define a function main that checks the methods above.

3. Now we want to write a method price_per_day that computes the price per day of the trip. To
that goal, it is necessary to be able to compute the duration of the trip. Before defining
price_per_day, write the following independent functions (put them in a file utils.cpp):
- bool before(Date d1, Date d2); that returns true if d1 precedes d2, otherwise false (to simplify,
assume that d1 and d2 have the same value for the year attribute)
- int difference(Date d1, Date d2); that symbolizes d1 - d2 i.e., returns the number of days
between d1 and d2 (to simplify, assume that every month is 30 days long)
- int duration(Date d1, Date d2); that returns the number of days between d1 and d2 (it calls
difference appropriately, depending on the fact that d1 precedes d2 or vice versa).
Of course, add getters in class Date if necessary.

4. Define a function main that enables the generated command to receive as parameters the
day, month and year of the beginning of a trip, and the day, month and year of its end. Provided

that the command receives the expected number of parameters, the programs interactively asks
the user to input the price of this trip, then it prints the characteristics of the trip and the price per
day.

5. Organize your files as described below:
- a directory include contains 2 sub-directories: classes that contains date.h and trip.h, and
others that contains utils.h
- a directory src contains files utils.cpp (this file contains the functions of question 3), date.cpp,
trip.cpp, and main.cpp, as well as the Makefile
- a directory bin that will receive the generated executable,
and write the associated Makefile.

Exercise 3. Alternative version of Trip

Create an alternative version of the application of exercise 2, in which the functions of question
3 are now methods of class Date:
- bool Date::before(Date d);
- int Date::difference(Date d);
- int Date::duration(Date d); - to write this method, you need to know that the keyword this is
used in C++ to represent the pointer to the object on which the member function is being called.

With this alternative version, do you still need getters?

Adapt all the files accordingly, as well as the organization and the Makefile.

Exercise 4. Simple classes for polynomials

1. Define a class Poly0 that represents polynomials of degree 0. This class has only one
(private) attribute of type float1. It has also a constructor to initialize the attribute, as well as a
method val that computes the value of the polynomial at a point x.

2. Define a class Poly1 that represents polynomials of degree 1. This class has two private
attributes of type float. This class must define at least:
- a constructor to initialize the attributes
- a method val that computes the value of the polynomial at a point x
- a method zero that computes the root (if any) of the polynomial in an interval [a,b] specified by
parameters
- a method derivative that returns the derivative polynomial (of type Poly0)

3. Define a function main that:
- declares and initializes an array of size N that contains instances of Poly1
- computes and displays the roots of these polynomials (given an interval[a,b])
- computes and displays the derivatives of the polynomials.
As before, organize your application with different directories for headers, .cpp files, and the
executable.

1 Remark: strictly speaking, the null polynomial is not of degree 0. You can either define an other class PolyNull to
handle this case, or consider that Poly0 includes the null polynomial.

