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Interpolating wavelets

Building interpolation wavelets
@ Classical interpolation tools can be fitted into a MRA framework.

Interpolating scaling function

e(0) = 1
ok) = 0 Vkez*

® is an interpolating scaling function < {

@ Built as infinite convolution of discrete filters p(v) = H::l) mo( =)
@ Interpolating property can be expressed as mo(v) + mo(v + ) =1
@ ¢ has compact support < h, is finite = Approximation order is finite

@ Families : Splines functions, Deslauriers-Dubuc interpolating wavelets
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Deslauriers-Dubuc interpolating wavelets

Lagrange interpolation :

@ Can explicitly compute filter coefficients h, with Lagrange polynomials of
order p Vn € [-2p+1,2p —1].
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Deslauriers-Dubuc interpolating wavelets

Lagrange interpolation :

@ Can explicitly compute filter coefficients h, with Lagrange polynomials of
order p Vn € [-2p+1,2p —1].

Dyadic refinement scheme :
.
II[—I;O] et
o

LT T

-2-10 1 2 -2-10 1 2 -2-10 1 2

Low pass filter coefficients h,

mo[0] =1 mo[2k] = 0 if k € Z* molk] = 0 if |k| > 2p

(=1 (2p)? Vk < p

mo[£(2k —1)] = 2% p12(p — k)I(p + k — 1)I(2k — 1) -
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Generation of the coefficients

Just evaluate Lagrange polynomials to get the h, :
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Generation of the scaling function

Generate ¢, at resolution 27/ with j convolutions &, * hf % - - x h :
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Generation of the scaling function

Generate ¢, at resolution 27/ with j convolutions &, * hf % - - x h :
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Generation of the scaling function

Generate ¢, at resolution 27/ with j convolutions &, * hf % - - x h :

Scaling function generation k = 5
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Generation of the scaling function

Generate ¢, at resolution 27 with j convolutions 6, * hf) % --- % hf :

Fourier localisation /|
get better with order

Oscillations ::\mplitude1 \
increases with order /||

Spatial domain Fourier domain

VR —}f\,j1 0 VQ 3 4| -1 05 0 0s 1
W

[—p=1—p=2—p=3—p=4] ——p=1——p=2—p=3—p=4

5/21



Properties

Basis definition in the dyadic case:

@ Scaling function : ¢(x) is of order p

Properties :

Wavelets on the interval (boundary problems) :

6/21



Properties

Basis definition in the dyadic case:
@ Scaling function : ¢(x) is of order p
e Mother wavelet : W(x) = ¢(2x — 1)

Properties :

Wavelets on the interval (boundary problems) :

6/21



Properties

Basis definition in the dyadic case:
@ Scaling function : ¢(x) is of order p
e Mother wavelet : W(x) = ¢(2x — 1)
o Wavelet family : Wy = W(2x — k)

Properties :

Wavelets on the interval (boundary problems) :

6/21



Properties

Basis definition in the dyadic case:
@ Scaling function : ¢(x) is of order p
e Mother wavelet : W(x) = ¢(2x — 1)
o Wavelet family : Wy = W(2x — k)
@ Basis: Bo={WVj | j=0 or (j,k) e N" x (2Z+ 1)}
——

Vo Wj—1

Properties :

Wavelets on the interval (boundary problems) :

6/21



Properties

Basis definition in the dyadic case:
@ Scaling function : ¢(x) is of order p
e Mother wavelet : W(x) = ¢(2x — 1)
o Wavelet family : Wy = W(2x — k)
@ Basis: Bo={WVj | j=0 or (j,k) e N" x (2Z+ 1)}
——

Vo Wj—1

Properties :

@ Symmetry

Wavelets on the interval (boundary problems) :

6/21



Properties

Basis definition in the dyadic case:
@ Scaling function : ¢(x) is of order p
e Mother wavelet : W(x) = ¢(2x — 1)
o Wavelet family : Wy = W(2x — k)
@ Basis: Bo={WVj | j=0 or (j,k) e N" x (2Z+ 1)}
——

Vo Wj—1

Properties :

@ Symmetry
e Finite support C [-2p + %, 2p — %

Wavelets on the interval (boundary problems) :

6/21



Properties

Basis definition in the dyadic case:
@ Scaling function : ¢(x) is of order p
e Mother wavelet : W(x) = ¢(2x — 1)
o Wavelet family : Wy = W(2x — k)
@ Basis: Bo={WVj | j=0 or (j,k) e N" x (2Z+ 1)}
——

Vo Wj—1

Properties :

@ Symmetry
e Finite support C [-2p + %, 2p — %
@ No orthogonality = need to solve a linear system

Wavelets on the interval (boundary problems) :

6/21



Properties

Basis definition in the dyadic case:
@ Scaling function : ¢(x) is of order p
e Mother wavelet : W(x) = ¢(2x — 1)
o Wavelet family : Wy = W(2x — k)
@ Basis: Bo={WVj | j=0 or (j,k) e N" x (2Z+ 1)}
——

Vo Wiy
Properties :
@ Symmetry
e Finite support C [-2p + %, 2p — %
@ No orthogonality = need to solve a linear system
@ 2p vanishing moments

Wavelets on the interval (boundary problems) :

6/21



Properties

Basis definition in the dyadic case:
@ Scaling function : ¢(x) is of order p
e Mother wavelet : W(x) = ¢(2x — 1)
o Wavelet family : Wy = W(2x — k)
@ Basis: Bo={WVj | j=0 or (j,k) e N" x (2Z+ 1)}
——

Vo Wiy
Properties :
@ Symmetry
e Finite support C [-2p + %, 2p — %
@ No orthogonality = need to solve a linear system
@ 2p vanishing moments

Wavelets on the interval (boundary problems) :

@ Take boundary filters of lower order
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Wavelets on the interval : case 2 = [0, 1]

Boundary filters : Lowest resolution => Highest resolution
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Wavelets on the interval : case 2 = [0, 1]

Boundary filters : Lowest resolution => Highest resolution
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Wavelets on the interval : case 2 = [0, 1]

Boundary filters : Lowest resolution => Highest resolution
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Wavelets on the interval : case 2 = [0, 1]

Boundary filters : Lowest resolution => Highest resolution

W,
Wavelets level = 5
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Wavelet tree approximation

8/21



Approximation in wavelet bases

Different approximations possible in wavelet bases :

o0 oo
@ Exact wavelet decomposition : f = Z Z(f | W)Wy = Z Z di W jic

j=0 kez j=0 kezZ

8/21



Approximation in wavelet bases

Different approximations possible in wavelet bases :

o0 oo
@ Exact wavelet decomposition : f = Z Z(f | W)Wy = Z Z di W jic

j=0 kez j=0 kez
J

@ Linear approximation Aj: f ~ Z Z di Vi
j=0 kez

8/21



Approximation in wavelet bases

Different approximations possible in wavelet bases :

o0 oo
@ Exact wavelet decomposition : f = Z Z(f | W)Wy = Z Z di W jic

j=0 kez j=0 kez
J

@ Linear approximation Aj: f ~ Z Z di Vi
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Approximation in wavelet bases

Different approximations possible in wavelet bases :

o0 oo
@ Exact wavelet decomposition : f = Z Z(f | W)Wy = Z Z di W jic

j=0 kez j=0 kezZ
J

@ Linear approximation Aj: f ~ Z Z di Vi
j=0 kez

@ Non-linear approximation A% (best N-terms approximation) :

N
|dJ ,ko‘ > ‘djlskll 22 ‘dj/\/717k1\/71| =f Zd},k,‘ Yji ki
i=0
@ Tree approximation 7 : Build a wavelet tree with following relationship
i KR i’k j/ = J +1
GRHRGK)S v e fok—1,2k+1}

Tree approximation spaces are close to non-linear spaces (because
singularities are located).
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Example of wavelet tree structure
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Scattered data interpolation

Scattered data interpolation
using wavelet trees
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Scattered data interpolation

Scattered data interpolation with wavelet trees:
@ Input: Set of N samples X C R with corresponding sample values
fe = {F(x) | x € X}
@ Samples are not aligned with wavelet centers 27k
@ Output: J5 C (0,Z) UN" x (2Z + 1) and coefficients cj st.
V(j,k)eN" x(2Z+1) I(j,k)eTs (k)R K)

f ~ Z Cjk\l]jk

U’k)EJS
Three step tree interpolation method:

@ Allocation : Build one-one mapping from X to wavelet basis Bs

@ Subsystem selection : Remove bad samples with a geometric criterion,
new wavelet basis is By, C By

@ System solving: Solve a linear system to find ¢; V(i,j) € Js
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Example function

f(x) = cos(75x) e€* cos(10x) on Q2 = [0, 1] approximated at order
p = 10 with up to N = 100 uniformly distributed samples :
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Example function
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First step : Allocation
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The goal is to select a wavelet subfamily to build an interpolating basis
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First step : Allocation

Allocation :

The goal is to select a wavelet subfamily to build an interpolating basis
By C Bo.
@ Build a subfamily which provides a function that is a priori smooth =
Low resolution wavelets should be preferred.

@ Select high resolution wavelets only where the density of measures is high.

Admissible allocation
A: X — JaC(0,Z) UN" X (2Z + 1) is an admissible allocation <

Vxi € X, A(xi) = (j, k) = x € Bjx(attraction basin of the wavelet Wj)
A(x) = (j, k),x € By with j' < j = Ix’ € X such that A(x") = (j/, k')
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First step : Allocation

Order on the allocations
A > A" < Fjo € N such that

{ Allocations are the same up to level jo
Vk €Z (jo,k) € Ta = [ A (jo, k) = Vjo,k| < [A" (jo, k) = Vo,
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First step : Allocation

Order on the allocations

A > A" < Fjo € N such that

{ Allocations are the same up to level jo
Vk € Z (jo,k) € Ta = [ A (jo, k) = Vo] < [ A7 (jo, k) — Yo,k

v
Theorem

Let X be a set of measure points. Then at least one of the
following sentence is true:

e 3! optimal allocation A

e 1 two equivalent allocations A ~ A’

A\
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Example of allocation
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Second step : Subsystem selection

Problems entailed by allocation A :

@ Some points are badly located : too far from their wavelet centers.
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Second step : Subsystem selection

Problems entailed by allocation A :

@ Some points are badly located : too far from their wavelet centers.

@ Linear system generated with previous allocation scheme may not be
invertible.

@ Need to extract the largest subtree As C A such that we can compute
the coefficients ¢; V(i,j) € Js.

= Just apply a geometric criterion to delete bad samples.

Exclusion criterion, placement condition

Let (P, p) € R} x R%, As fulfills the exclusion criterion of parameters (P, p)
U, k) = As(x) € Tas =

{ x € v — 27 p, v + 277 ]

(', k') = As(x') € Jas with j' < j= x" & vk — 2P, v +277P]

With Q = [0, 1] the system if invertible is As satisfies a (3, )-placement
condition.
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Example of subtree extraction
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Last step : System solving

Finding the coefficients ¢;; :

@ Once bad points have been removed we obtain a smaller
system.
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Last step : System solving

Finding the coefficients ¢;; :

@ Once bad points have been removed we obtain a smaller
system.

@ Solve square linear system of size Ns:

Z cikVjk(x) = f(x) Vx € Xs
U:k)eTs

xi = As'(ji, ki) Vi € [0, Ns — 1]

N Ng—1
Z ik Vi ki (xi) = f(x;) Viin [0, Ns — 1]
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Example of MRI at order p = 10

Results
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Example of MRI at order p = 10
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Error and performance versus order and number of samples

Mean execution time (10k reconstructions)
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Error and performance versus order and number
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Error and performance versus order and number of samples
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Linf norm of the residue

600

-2
——3

—ir—10
w50

19/21



Conclusion and extensions

@ New multiresolution framework for scattered data
interpolation.
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Conclusion and extensions

@ New multiresolution framework for scattered data
interpolation.

@ Can be extended to more dimensions.

@ Can be adapted to any existing interpolating functions.
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Conclusion and extensions

New multiresolution framework for scattered data
interpolation.

@ Can be extended to more dimensions.
@ Can be adapted to any existing interpolating functions.

@ Incremental framework proposed, no need to solve the whole
linear system at each sample added.
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