Scattered Data Interpolation using Wavelet Trees

Jean-Baptiste Keck

M2 MSIAM

Paper Review 10/02/2015

ヘロト 人間ト 人造ト 人造ト

1/21

Interpolating wavelets

<ロト < 部ト < 言ト < 言ト 2/21

• Classical interpolation tools can be fitted into a MRA framework.

Interpolating scaling function

 φ is an interpolating scaling function $\Leftrightarrow \begin{cases} \varphi(0) = 1 \\ \varphi(k) = 0 \quad \forall \ k \in \mathbb{Z}^* \end{cases}$

- Built as infinite convolution of discrete filters φ̂(ν) = Π^{+∞}_{k=1} m₀(^ν/_{2π})
- Interpolating property can be expressed as $m_0(
 u) + m_0(
 u + \pi) = 1$
- φ has compact support $\Leftrightarrow h_n$ is finite \Rightarrow Approximation order is finite
- Families : Splines functions, Deslauriers-Dubuc interpolating wavelets

• Classical interpolation tools can be fitted into a MRA framework.

 $\begin{array}{l} \text{Interpolating scaling function} \\ \varphi \text{ is an interpolating scaling function} \Leftrightarrow \left\{ \begin{array}{l} \varphi(0) &=& 1 \\ \varphi(k) &=& 0 \quad \forall \ k \in \mathbb{Z}^* \end{array} \right. \end{array}$

- Built as infinite convolution of discrete filters φ̂(ν) = Π^{+∞}_{k=1} m₀(^ν/_{2π})
- Interpolating property can be expressed as $m_0(
 u) + m_0(
 u + \pi) = 1$
- φ has compact support $\Leftrightarrow h_n$ is finite \Rightarrow Approximation order is finite
- Families : Splines functions, Deslauriers-Dubuc interpolating wavelets

• Classical interpolation tools can be fitted into a MRA framework.

Interpolating scaling function

arphi is an interpolating scaling function $\Leftrightarrow \left\{ egin{array}{cc} arphi(0) &=& 1 \ arphi(k) &=& 0 \ orall \ k\in\mathbb{Z}^* \end{array}
ight.$

- Built as infinite convolution of discrete filters $\widehat{\varphi}(\nu) = \prod_{k=1}^{+\infty} m_0(\frac{\nu}{2\pi})$
- Interpolating property can be expressed as $m_0(\nu) + m_0(\nu + \pi) = 1$
- φ has compact support $\Leftrightarrow h_n$ is finite \Rightarrow Approximation order is finite
- Families : Splines functions, Deslauriers-Dubuc interpolating wavelets

• Classical interpolation tools can be fitted into a MRA framework.

Interpolating scaling function

 φ is an interpolating scaling function $\Leftrightarrow \begin{cases} \varphi(0) &= 1 \\ \varphi(k) &= 0 \quad \forall \ k \in \mathbb{Z}^* \end{cases}$

- Built as infinite convolution of discrete filters $\widehat{\varphi}(\nu) = \prod_{k=1}^{+\infty} m_0(\frac{\nu}{2\pi})$
- Interpolating property can be expressed as $m_0(
 u) + m_0(
 u + \pi) = 1$
- φ has compact support $\Leftrightarrow h_n$ is finite \Rightarrow Approximation order is finite
- Families : Splines functions, Deslauriers-Dubuc interpolating wavelets

• Classical interpolation tools can be fitted into a MRA framework.

Interpolating scaling function

$$arphi$$
 is an interpolating scaling function $\Leftrightarrow \left\{ egin{array}{cc} arphi(0) &= 1 \\ arphi(k) &= 0 & orall \; k \in \mathbb{Z}^* \end{array}
ight.$

- Built as infinite convolution of discrete filters $\widehat{\varphi}(\nu) = \prod_{k=1}^{+\infty} m_0(\frac{\nu}{2\pi})$
- Interpolating property can be expressed as $m_0(
 u) + m_0(
 u+\pi) = 1$
- φ has compact support $\Leftrightarrow h_n$ is finite \Rightarrow Approximation order is finite
- Families : Splines functions, Deslauriers-Dubuc interpolating wavelets

• Classical interpolation tools can be fitted into a MRA framework.

Interpolating scaling function

$$arphi$$
 is an interpolating scaling function $\Leftrightarrow \left\{ egin{array}{cc} arphi(0) &= 1 \ arphi(k) &= 0 \ \forall \ k \in \mathbb{Z}^* \end{array}
ight.$

- Built as infinite convolution of discrete filters $\widehat{\varphi}(\nu) = \prod_{k=1}^{+\infty} m_0(\frac{\nu}{2\pi})$
- Interpolating property can be expressed as $m_0(
 u) + m_0(
 u+\pi) = 1$
- φ has compact support $\Leftrightarrow h_n$ is finite \Rightarrow Approximation order is finite
- Families : Splines functions, Deslauriers-Dubuc interpolating wavelets

Deslauriers-Dubuc interpolating wavelets

Lagrange interpolation :

Can explicitly compute filter coefficients *h_n* with Lagrange polynomials of order *p* ∀*n* ∈ [[−2*p* + 1, 2*p* − 1]].

Deslauriers-Dubuc interpolating wavelets

Lagrange interpolation :

Can explicitly compute filter coefficients *h_n* with Lagrange polynomials of order *p* ∀*n* ∈ [[−2*p* + 1, 2*p* − 1]].

Dyadic refinement scheme :

Deslauriers-Dubuc interpolating wavelets

Lagrange interpolation :

Can explicitly compute filter coefficients *h_n* with Lagrange polynomials of order *p* ∀*n* ∈ [[−2*p* + 1, 2*p* − 1]].

Dyadic refinement scheme :

Low pass filter coefficients h_n

 $m_0[0] = 1$ $m_0[2k] = 0$ if $k \in \mathbb{Z}^*$ $m_0[k] = 0$ if $|k| \ge 2p$

$$m_0[\pm (2k-1)] = rac{(-1)^{k+1}(2p)!^2}{2^{4p}p!^2(p-k)!(p+k-1)!(2k-1)} \quad orall k \leq p$$

3/21

Generation of the coefficients

Just evaluate Lagrange polynomials to get the h_n :

Generate φ_p at resolution 2^{-j} with j convolutions $\delta_{x,0} * h_n^p * \cdots * h_n^p$:

5/21

Generate φ_p at resolution 2^{-j} with j convolutions $\delta_{x,0} * h_n^p * \cdots * h_n^p$:

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへの

Generate φ_p at resolution 2^{-j} with j convolutions $\delta_{x,0} * h_n^p * \cdots * h_n^p$:

Generate φ_p at resolution 2^{-j} with j convolutions $\delta_{x,0} * h_n^p * \cdots * h_n^p$:

・ロト ・日 ・ モ ・ ・ 日 ・ うへの

Generate φ_p at resolution 2^{-j} with j convolutions $\delta_{x,0} * h_n^p * \cdots * h_n^p$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Generate φ_p at resolution 2^{-j} with j convolutions $\delta_{x,0} * h_n^p * \cdots * h_n^p$:

・ロト ・日 ・ モ ・ ・ 日 ・ うへの

Generate φ_p at resolution 2^{-j} with j convolutions $\delta_{x,0} * h_n^p * \cdots * h_n^p$:

Basis definition in the dyadic case:

- Scaling function : $\varphi(x)$ is of order p
- Mother wavelet : $\Psi(x) = \varphi(2x 1)$
- Wavelet family : $\Psi_{jk} = \Psi(2^j x k)$

• Basis :
$$\mathcal{B}_0 = \{\Psi_{jk} \mid \underbrace{j=0}_{V_0} \text{ or } \underbrace{(j,k) \in \mathbb{N}^* \times (2\mathbb{Z}+1)}_{W_{j-1}}\}$$

Properties :

- Symmetry
- Finite support $\subset \left[-2p + \frac{1}{2}, 2p \frac{1}{2}\right]$
- No orthogonality \Rightarrow need to solve a linear system
- 2p vanishing moments

Wavelets on the interval (boundary problems) :

• Take boundary filters of lower order

Basis definition in the dyadic case:

- Scaling function : $\varphi(x)$ is of order p
- Mother wavelet : $\Psi(x) = \varphi(2x 1)$
- Wavelet family : $\Psi_{jk} = \Psi(2^j x k)$

• Basis :
$$\mathcal{B}_0 = \{\Psi_{jk} \mid \underbrace{j=0}_{V_0} \text{ or } \underbrace{(j,k) \in \mathbb{N}^* \times (2\mathbb{Z}+1)}_{W_{j-1}}\}$$

Properties :

- Symmetry
- Finite support $\subset \left[-2p + \frac{1}{2}, 2p \frac{1}{2}\right]$
- No orthogonality ⇒ need to solve a linear system
- 2p vanishing moments

Wavelets on the interval (boundary problems) :

• Take boundary filters of lower order

Basis definition in the dyadic case:

- Scaling function : $\varphi(x)$ is of order p
- Mother wavelet : $\Psi(x) = \varphi(2x-1)$
- Wavelet family : $\Psi_{jk} = \Psi(2^j x k)$

• Basis :
$$\mathcal{B}_0 = \{\Psi_{jk} \mid \underbrace{j=0}_{V_0} \text{ or } \underbrace{(j,k) \in \mathbb{N}^* \times (2\mathbb{Z}+1)}_{W_{j-1}}\}$$

Properties :

- Symmetry
- Finite support $\subset \left[-2p + \frac{1}{2}, 2p \frac{1}{2}\right]$
- No orthogonality ⇒ need to solve a linear system
- 2p vanishing moments

Wavelets on the interval (boundary problems) :

• Take boundary filters of lower order

Basis definition in the dyadic case:

- Scaling function : $\varphi(x)$ is of order p
- Mother wavelet : $\Psi(x) = \varphi(2x-1)$
- Wavelet family : $\Psi_{jk} = \Psi(2^j x k)$

• Basis :
$$\mathcal{B}_0 = \{\Psi_{jk} \mid \underbrace{j=0}_{V_0} \text{ or } \underbrace{(j,k) \in \mathbb{N}^* \times (2\mathbb{Z}+1)}_{W_{j-1}}\}$$

Properties :

- Symmetry
- Finite support $\subset \left[-2p + \frac{1}{2}, 2p \frac{1}{2}\right]$
- No orthogonality ⇒ need to solve a linear system
- 2p vanishing moments

Wavelets on the interval (boundary problems) :

• Take boundary filters of lower order

Basis definition in the dyadic case:

- Scaling function : $\varphi(x)$ is of order p
- Mother wavelet : $\Psi(x) = \varphi(2x-1)$
- Wavelet family : $\Psi_{jk} = \Psi(2^j x k)$

• Basis :
$$\mathcal{B}_0 = \{\Psi_{jk} \mid \underbrace{j=0}_{V_0} \text{ or } \underbrace{(j,k) \in \mathbb{N}^* \times (2\mathbb{Z}+1)}_{W_{j-1}}\}$$

Properties :

- Symmetry
- Finite support $\subset [-2p + \frac{1}{2}, 2p \frac{1}{2}]$
- No orthogonality \Rightarrow need to solve a linear system
- 2p vanishing moments

Wavelets on the interval (boundary problems) :

• Take boundary filters of lower order

Basis definition in the dyadic case:

- Scaling function : $\varphi(x)$ is of order p
- Mother wavelet : $\Psi(x) = \varphi(2x 1)$
- Wavelet family : $\Psi_{jk} = \Psi(2^j x k)$

• Basis :
$$\mathcal{B}_0 = \{\Psi_{jk} \mid \underbrace{j=0}_{V_0} \text{ or } \underbrace{(j,k) \in \mathbb{N}^* \times (2\mathbb{Z}+1)}_{W_{j-1}}\}$$

Properties :

- Symmetry
- Finite support $\subset [-2p + \frac{1}{2}, 2p \frac{1}{2}]$
- No orthogonality ⇒ need to solve a linear system
- 2p vanishing moments

Wavelets on the interval (boundary problems) :

• Take boundary filters of lower order

Basis definition in the dyadic case:

- Scaling function : $\varphi(x)$ is of order p
- Mother wavelet : $\Psi(x) = \varphi(2x-1)$
- Wavelet family : $\Psi_{jk} = \Psi(2^j x k)$

• Basis :
$$\mathcal{B}_0 = \{\Psi_{jk} \mid \underbrace{j=0}_{V_0} \text{ or } \underbrace{(j,k) \in \mathbb{N}^* \times (2\mathbb{Z}+1)}_{W_{j-1}}\}$$

Properties :

- Symmetry
- Finite support $\subset [-2p + \frac{1}{2}, 2p \frac{1}{2}]$
- No orthogonality \Rightarrow need to solve a linear system
- 2p vanishing moments

Wavelets on the interval (boundary problems) :

• Take boundary filters of lower order

Basis definition in the dyadic case:

- Scaling function : $\varphi(x)$ is of order p
- Mother wavelet : $\Psi(x) = \varphi(2x-1)$
- Wavelet family : $\Psi_{jk} = \Psi(2^j x k)$

• Basis :
$$\mathcal{B}_0 = \{\Psi_{jk} \mid \underbrace{j=0}_{V_0} \text{ or } \underbrace{(j,k) \in \mathbb{N}^* \times (2\mathbb{Z}+1)}_{W_{j-1}}\}$$

Properties :

- Symmetry
- Finite support $\subset [-2p + \frac{1}{2}, 2p \frac{1}{2}]$
- No orthogonality \Rightarrow need to solve a linear system
- 2p vanishing moments

Wavelets on the interval (boundary problems) :

• Take boundary filters of lower order

Basis definition in the dyadic case:

- Scaling function : $\varphi(x)$ is of order p
- Mother wavelet : $\Psi(x) = \varphi(2x 1)$
- Wavelet family : $\Psi_{jk} = \Psi(2^j x k)$

• Basis :
$$\mathcal{B}_0 = \{\Psi_{jk} \mid \underbrace{j=0}_{V_0} \text{ or } \underbrace{(j,k) \in \mathbb{N}^* \times (2\mathbb{Z}+1)}_{W_{j-1}}\}$$

Properties :

- Symmetry
- Finite support $\subset [-2p + \frac{1}{2}, 2p \frac{1}{2}]$
- No orthogonality \Rightarrow need to solve a linear system
- 2p vanishing moments

Wavelets on the interval (boundary problems) :

• Take boundary filters of lower order

Boundary filters : Lowest resolution => Highest resolution

 V_0

Boundary filters : Lowest resolution => Highest resolution

 W_0

Boundary filters : Lowest resolution => Highest resolution

 W_1

Boundary filters : Lowest resolution => Highest resolution

 W_2

7/21

Boundary filters : Lowest resolution => Highest resolution

Wavelets level = 4 1.0 0.8 0.6 0.4 0.2 0.0 -0.2L 0.0 0.2 0.4 0.6 0.8 1.0

 W_3

7/21

Boundary filters : Lowest resolution => Highest resolution

Wavelets level = 5 1.0 0.8 0.6 0.4 0.2 0.0 -0.2L 0.0 0.4 0.6 0.8 1.0

 W_4

Wavelet tree approximation

Approximation in wavelet bases

Different approximations possible in wavelet bases :

- Exact wavelet decomposition : $f = \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle f | \Psi_{jk} \rangle \Psi_{jk} = \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} d_{jk} \Psi_{jk}$
- Linear approximation $\mathcal{A}_{lin}^{\alpha}$: $f \simeq \sum_{j=0}^{J} \sum_{k \in \mathbb{Z}} d_{jk} \Psi_{jk}$
- Non-linear approximation A^α (best N-terms approximation) :

$$|d_{j_0,k_0}| \ge |d_{j_1,k_1}| \ge \cdots \ge |d_{j_{N-1},k_{N-1}}| \Rightarrow f \simeq \sum_{i=0}^n d_{j_i,k_i} \; \psi_{j_i,k_i}$$

• Tree approximation \mathcal{T}^{α} : Build a wavelet tree with following relationship

$$(j,k) \mathcal{R}(j',k') \Leftrightarrow \begin{cases} j' = j+1 \\ k' \in \{2k-1,2k+1\} \end{cases}$$

Tree approximation spaces are close to non-linear spaces (because singularities are located).
Approximation in wavelet bases

Different approximations possible in wavelet bases :

- Exact wavelet decomposition : $f = \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle f | \Psi_{jk} \rangle \Psi_{jk} = \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} d_{jk} \Psi_{jk}$
- Linear approximation \mathcal{A}_{lin}^{lpha} : $f \simeq \sum_{j=0}^{J} \sum_{k \in \mathbb{Z}} d_{jk} \Psi_{jk}$
- Non-linear approximation A^α (best N-terms approximation) :

$$|d_{j_0,k_0}| \ge |d_{j_1,k_1}| \ge \dots \ge |d_{j_{N-1},k_{N-1}}| \Rightarrow f \simeq \sum_{i=0}^N d_{j_i,k_i} \; \psi_{j_i,k_i}$$

• Tree approximation \mathcal{T}^{α} : Build a wavelet tree with following relationship

$$(j,k) \mathcal{R}(j',k') \Leftrightarrow \begin{cases} j' = j+1 \\ k' \in \{2k-1,2k+1\} \end{cases}$$

Tree approximation spaces are close to non-linear spaces (because singularities are located).

Approximation in wavelet bases

Different approximations possible in wavelet bases :

- Exact wavelet decomposition : $f = \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle f | \Psi_{jk} \rangle \Psi_{jk} = \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} d_{jk} \Psi_{jk}$
- Linear approximation \mathcal{A}_{lin}^{lpha} : $f\simeq\sum_{j=0}^{J}\sum_{k\in\mathbb{Z}}d_{jk}\Psi_{jk}$
- Non-linear approximation \mathcal{A}^{α} (best N-terms approximation) :

$$|d_{j_0,k_0}| \ge |d_{j_1,k_1}| \ge \cdots \ge |d_{j_{N-1},k_{N-1}}| \Rightarrow f \simeq \sum_{i=0}^N d_{j_i,k_i} \ \psi_{j_i,k_i}$$

• Tree approximation \mathcal{T}^{α} : Build a wavelet tree with following relationship

$$(j,k) \mathcal{R}(j',k') \Leftrightarrow \begin{cases} j' = j+1 \\ k' \in \{2k-1,2k+1\} \end{cases}$$

Tree approximation spaces are close to non-linear spaces (because singularities are located).

Approximation in wavelet bases

Different approximations possible in wavelet bases :

- Exact wavelet decomposition : $f = \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle f | \Psi_{jk} \rangle \Psi_{jk} = \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} d_{jk} \Psi_{jk}$
- Linear approximation \mathcal{A}_{lin}^{lpha} : $f\simeq\sum_{j=0}^{J}\sum_{k\in\mathbb{Z}}d_{jk}\Psi_{jk}$
- Non-linear approximation \mathcal{A}^{α} (best N-terms approximation) :

$$|d_{j_0,k_0}| \ge |d_{j_1,k_1}| \ge \cdots \ge |d_{j_{N-1},k_{N-1}}| \Rightarrow f \simeq \sum_{i=0}^N d_{j_i,k_i} \; \psi_{j_i,k_i}$$

• Tree approximation \mathcal{T}^{lpha} : Build a wavelet tree with following relationship

$$(j,k) \mathcal{R} (j',k') \Leftrightarrow \left\{ egin{array}{ll} j' &=& j+1 \ k' &\in& \{2k-1,2k+1\} \end{array}
ight.$$

Tree approximation spaces are close to non-linear spaces (because singularities are located).

Example of wavelet tree structure

Scattered data interpolation using wavelet trees

<ロト < 部ト < 国ト < 国ト = のへの 10/21

Scattered data interpolation with wavelet trees:

- Input: Set of N samples X ⊂ ℝ with corresponding sample values
 f_X = {f(x) | x ∈ X}
- Samples are not aligned with wavelet centers $2^{-j}k$
- Output: J_S ⊂ (0, Z) ∪ N^{*} × (2Z + 1) and coefficients c_{jk} st.

 $\left\{ egin{array}{l} orall \left(j',k'
ight)\in\mathbb{N}^* imes \left(2\mathbb{Z}+1
ight) \quad \exists \left(j,k
ight)\in\mathcal{J}_{\mathcal{S}} \quad \left(j,k
ight)\mathcal{R}\left(j',k'
ight) \ f\simeq\sum_{\left(j,k
ight)\in\mathcal{J}_{\mathcal{S}}}c_{jk}\Psi_{jk} \end{array}
ight.$

- Allocation : Build one-one mapping from \mathcal{X} to wavelet basis $\mathcal{B}_{\mathcal{J}}$
- Subsystem selection : Remove bad samples with a geometric criterion, new wavelet basis is $B_{\mathcal{J}_S} \subset \mathcal{B}_{\mathcal{J}}$
- System solving: Solve a linear system to find $c_{ij} \forall (i,j) \in \mathcal{J}_S$

Scattered data interpolation with wavelet trees:

- Input: Set of N samples $\mathcal{X} \subset \mathbb{R}$ with corresponding sample values $f_{\mathcal{X}} = \{f(x) \mid x \in \mathcal{X}\}$
- Samples are not aligned with wavelet centers $2^{-j}k$
- Output: J_S ⊂ (0, Z) ∪ N^{*} × (2Z + 1) and coefficients c_{jk} st.

 $\left\{ egin{array}{l} orall \left(j',k'
ight)\in\mathbb{N}^* imes \left(2\mathbb{Z}+1
ight) \quad \exists \left(j,k
ight)\in\mathcal{J}_{\mathcal{S}} \quad \left(j,k
ight)\mathcal{R}\left(j',k'
ight) \ f\simeq\sum_{\left(j,k
ight)\in\mathcal{J}_{\mathcal{S}}}c_{jk}\Psi_{jk} \end{array}
ight.$

- Allocation : Build one-one mapping from X to wavelet basis B_J
- Subsystem selection : Remove bad samples with a geometric criterion, new wavelet basis is $B_{\mathcal{J}_S} \subset \mathcal{B}_{\mathcal{J}}$
- System solving: Solve a linear system to find $c_{ij} \forall (i,j) \in \mathcal{J}_S$

Scattered data interpolation with wavelet trees:

- Input: Set of N samples X ⊂ ℝ with corresponding sample values
 f_X = {f(x) | x ∈ X}
- Samples are not aligned with wavelet centers $2^{-j}k$
- Output: J_S ⊂ (0, Z) ∪ N^{*} × (2Z + 1) and coefficients c_{jk} st.

$$\left\{ egin{array}{ll} orall \left(j',k'
ight)\in\mathbb{N}^* imes\left(2\mathbb{Z}+1
ight) &\exists \left(j,k
ight)\in\mathcal{J}_{\mathcal{S}} \quad \left(j,k
ight)\mathcal{R}\left(j',k'
ight) \ f\simeq\sum_{\left(j,k
ight)\in\mathcal{J}_{\mathcal{S}}}c_{jk}\Psi_{jk} \end{array}
ight.$$

- Allocation : Build one-one mapping from X to wavelet basis B_J
- Subsystem selection : Remove bad samples with a geometric criterion, new wavelet basis is $B_{\mathcal{J}_S} \subset \mathcal{B}_{\mathcal{J}}$
- System solving: Solve a linear system to find $c_{ij} \forall (i,j) \in \mathcal{J}_S$

Scattered data interpolation with wavelet trees:

- Input: Set of N samples X ⊂ ℝ with corresponding sample values
 f_X = {f(x) | x ∈ X}
- Samples are not aligned with wavelet centers $2^{-j}k$
- Output: J_S ⊂ (0, Z) ∪ N^{*} × (2Z + 1) and coefficients c_{jk} st.

$$\left\{ egin{array}{ll} orall \left(j',k'
ight)\in\mathbb{N}^* imes\left(2\mathbb{Z}+1
ight) &\exists \left(j,k
ight)\in\mathcal{J}_{\mathcal{S}} \quad \left(j,k
ight)\mathcal{R}\left(j',k'
ight) \ f\simeq\sum_{\left(j,k
ight)\in\mathcal{J}_{\mathcal{S}}}c_{jk}\Psi_{jk} \end{array}
ight.$$

- Allocation : Build one-one mapping from \mathcal{X} to wavelet basis $\mathcal{B}_{\mathcal{J}}$
- Subsystem selection : Remove bad samples with a geometric criterion, new wavelet basis is $B_{\mathcal{J}_S} \subset \mathcal{B}_{\mathcal{J}}$
- System solving: Solve a linear system to find $c_{ij} \forall (i,j) \in \mathcal{J}_S$

Scattered data interpolation with wavelet trees:

- Input: Set of N samples X ⊂ ℝ with corresponding sample values
 f_X = {f(x) | x ∈ X}
- Samples are not aligned with wavelet centers $2^{-j}k$
- Output: J_S ⊂ (0, Z) ∪ N^{*} × (2Z + 1) and coefficients c_{jk} st.

$$\left\{ egin{array}{ll} orall \left(j',k'
ight)\in\mathbb{N}^* imes\left(2\mathbb{Z}+1
ight) &\exists \left(j,k
ight)\in\mathcal{J}_{\mathcal{S}} \quad \left(j,k
ight)\mathcal{R}\left(j',k'
ight) \ f\simeq\sum_{\left(j,k
ight)\in\mathcal{J}_{\mathcal{S}}}c_{jk}\Psi_{jk} \end{array}
ight.$$

- Allocation : Build one-one mapping from $\mathcal X$ to wavelet basis $\mathcal B_\mathcal J$
- Subsystem selection : Remove bad samples with a geometric criterion, new wavelet basis is B_{J_S} ⊂ B_J
- System solving: Solve a linear system to find $c_{ij} \forall (i,j) \in \mathcal{J}_S$

Scattered data interpolation with wavelet trees:

- Input: Set of N samples X ⊂ ℝ with corresponding sample values
 f_X = {f(x) | x ∈ X}
- Samples are not aligned with wavelet centers $2^{-j}k$
- Output: J_S ⊂ (0, Z) ∪ N^{*} × (2Z + 1) and coefficients c_{jk} st.

$$\left\{ egin{array}{ll} orall \left(j',k'
ight)\in\mathbb{N}^* imes\left(2\mathbb{Z}+1
ight) &\exists \left(j,k
ight)\in\mathcal{J}_{\mathcal{S}} \quad \left(j,k
ight)\mathcal{R}\left(j',k'
ight) \ f\simeq\sum_{\left(j,k
ight)\in\mathcal{J}_{\mathcal{S}}}c_{jk}\Psi_{jk} \end{array}
ight.$$

- Allocation : Build one-one mapping from $\mathcal X$ to wavelet basis $\mathcal B_\mathcal J$
- Subsystem selection : Remove bad samples with a geometric criterion, new wavelet basis is B_{J_S} ⊂ B_J
- System solving: Solve a linear system to find $c_{ij} \forall (i,j) \in \mathcal{J}_S$

 $f(x) = cos(75x) e^{x} cos(10x)$ on $\Omega = [0, 1]$ approximated at order p = 10 with up to N = 100 uniformly distributed samples :

 $f(x) = cos(75x) e^{x} cos(10x)$ on $\Omega = [0, 1]$ approximated at order p = 10 with up to N = 100 uniformly distributed samples :

 $f(x) = cos(75x) e^{x} cos(10x)$ on $\Omega = [0, 1]$ approximated at order p = 10 with up to N = 100 uniformly distributed samples :

11/21

Image: Image:

 $f(x) = cos(75x) e^{x} cos(10x)$ on $\Omega = [0, 1]$ approximated at order p = 10 with up to N = 100 uniformly distributed samples :

11/21

 $f(x) = cos(75x) e^{x} cos(10x)$ on $\Omega = [0, 1]$ approximated at order p = 10 with up to N = 100 uniformly distributed samples :

<ロト<型ト<差ト<差ト<差ト 11/21

The goal is to select a wavelet subfamily to build an interpolating basis $\mathcal{B}_\mathcal{J} \subset \mathcal{B}_0.$

- Build a subfamily which provides a function that is a priori smooth ⇒ Low resolution wavelets should be preferred.
- Select high resolution wavelets only where the density of measures is high.

Admissible allocation

 $\mathcal{A}:\mathcal{X}\to\mathcal{J}_{\mathcal{A}}\subset(0,\mathbb{Z})\cup\mathbb{N}^*\times(2\mathbb{Z}+1)\text{ is an admissible allocation }\Leftrightarrow$

 $\begin{cases} \forall x_i \in \mathcal{X}, \ \mathcal{A}(x_i) = (j, k) \Rightarrow x \in B_{jk} (\text{attraction basin of the wavelet } \Psi_{jk}) \\ \mathcal{A}(x) = (j, k), x \in B_{j'k'} \text{ with } j' < j \Rightarrow \exists x' \in \mathcal{X} \text{ such that } \mathcal{A}(x') = (j', k') \end{cases}$

The goal is to select a wavelet subfamily to build an interpolating basis $\mathcal{B}_{\mathcal{J}} \subset \mathcal{B}_0$.

- Build a subfamily which provides a function that is a priori smooth ⇒ Low resolution wavelets should be preferred.
- Select high resolution wavelets only where the density of measures is high.

Admissible allocation

 $\mathcal{A}:\mathcal{X}\to\mathcal{J}_{\mathcal{A}}\subset(0,\mathbb{Z})\cup\mathbb{N}^*\times(2\mathbb{Z}+1)\text{ is an admissible allocation }\Leftrightarrow$

 $\begin{cases} \forall x_i \in \mathcal{X}, \ \mathcal{A}(x_i) = (j, k) \Rightarrow x \in B_{jk} (\text{attraction basin of the wavelet } \Psi_{jk}) \\ \mathcal{A}(x) = (j, k), x \in B_{j'k'} \text{ with } j' < j \Rightarrow \exists x' \in \mathcal{X} \text{ such that } \mathcal{A}(x') = (j', k') \end{cases}$

The goal is to select a wavelet subfamily to build an interpolating basis $\mathcal{B}_{\mathcal{J}} \subset \mathcal{B}_0$.

- Build a subfamily which provides a function that is a priori smooth ⇒ Low resolution wavelets should be preferred.
- Select high resolution wavelets only where the density of measures is high.

Admissible allocation

 $\mathcal{A}:\mathcal{X}
ightarrow\mathcal{J}_{\mathcal{A}}\subset(0,\mathbb{Z})\cup\mathbb{N}^{*} imes(2\mathbb{Z}+1)$ is an admissible allocation \Leftrightarrow

 $\begin{cases} \forall x_i \in \mathcal{X}, \ \mathcal{A}(x_i) = (j, k) \Rightarrow x \in B_{jk} (\text{attraction basin of the wavelet } \Psi_{jk}) \\ \mathcal{A}(x) = (j, k), x \in B_{j'k'} \text{ with } j' < j \Rightarrow \exists x' \in \mathcal{X} \text{ such that } \mathcal{A}(x') = (j', k') \end{cases}$

The goal is to select a wavelet subfamily to build an interpolating basis $\mathcal{B}_{\mathcal{J}} \subset \mathcal{B}_0$.

- Build a subfamily which provides a function that is a priori smooth ⇒ Low resolution wavelets should be preferred.
- Select high resolution wavelets only where the density of measures is high.

Admissible allocation

 $\mathcal{A}:\mathcal{X}\to\mathcal{J}_{\mathcal{A}}\subset(0,\mathbb{Z})\cup\mathbb{N}^*\times(2\mathbb{Z}+1)\text{ is an admissible allocation }\Leftrightarrow$

 $\left\{ \begin{array}{l} \forall \; x_i \in \mathcal{X}, \; \mathcal{A}(x_i) = (j,k) \; \Rightarrow \; x \in B_{jk} (\text{attraction basin of the wavelet } \Psi_{jk}) \\ \mathcal{A}(x) = (j,k), x \in B_{j'k'} \; \text{with} \; j' < j \Rightarrow \exists x' \in \mathcal{X} \; \text{such that} \; \mathcal{A}(x') = (j',k') \end{array} \right.$

Order on the allocations

 $\mathcal{A} \geq \mathcal{A}' \Leftrightarrow \exists j_0 \in \mathbb{N}$ such that

 $\begin{array}{l} \text{Allocations are the same up to level } j_0 \\ \forall k \in \mathbb{Z} \ \ (j_0,k) \in \mathcal{J}_{\mathcal{A}} \Rightarrow |\mathcal{A}^{-1}(j_0,k) - \nu_{j_0,k}| \leq |\mathcal{A}'^{-1}(j_0,k) - \nu_{j_0,k}| \end{array}$

Theorem

Let ${\mathcal X}$ be a set of measure points. Then at least one of the following sentence is true:

- \exists ! optimal allocation \mathcal{A}
- \exists two equivalent allocations $\mathcal{A} \sim \mathcal{A}'$

Order on the allocations

 $\mathcal{A} \geq \mathcal{A}' \Leftrightarrow \exists j_0 \in \mathbb{N}$ such that

 $\begin{cases} \text{ Allocations are the same up to level } j_0 \\ \forall k \in \mathbb{Z} \ (j_0, k) \in \mathcal{J}_{\mathcal{A}} \Rightarrow |\mathcal{A}^{-1}(j_0, k) - \nu_{j_0, k}| \leq |\mathcal{A}'^{-1}(j_0, k) - \nu_{j_0, k}| \end{cases}$

Theorem

Let \mathcal{X} be a set of measure points. Then at least one of the following sentence is true:

- \exists ! optimal allocation \mathcal{A}
- \exists two equivalent allocations $\mathcal{A}\sim\mathcal{A}'$

Problems entailed by allocation $\ensuremath{\mathcal{A}}$:

- Some points are badly located : too far from their wavelet centers.
- Linear system generated with previous allocation scheme may not be invertible.
- Need to extract the largest subtree A_S ⊂ A such that we can compute the coefficients c_{ij} ∀(i,j) ∈ J_S.
- \Rightarrow Just apply a geometric criterion to delete bad samples.

Exclusion criterion, placement condition

Let $(P, \rho) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+$, \mathcal{A}_S fulfills the exclusion criterion of parameters (P, ρ) $(j, k) = \mathcal{A}_S(x) \in \mathcal{J}_{\mathcal{A}_S} \Rightarrow$ $\begin{cases} x \in]\nu_{jk} - 2^{-j}\rho, \nu_{jk} + 2^{-j}\rho] \\ (j', k') = \mathcal{A}_S(x') \in \mathcal{J}_{\mathcal{A}_S} \text{ with } j' < j \Rightarrow x' \notin]\nu_{jk} - 2^{-j}P, \nu_{jk} + 2^{-j}P] \end{cases}$

Problems entailed by allocation $\ensuremath{\mathcal{A}}$:

- Some points are badly located : too far from their wavelet centers.
- Linear system generated with previous allocation scheme may not be invertible.
- Need to extract the largest subtree A_S ⊂ A such that we can compute the coefficients c_{ij} ∀(i,j) ∈ J_S.
- \Rightarrow Just apply a geometric criterion to delete bad samples.

Exclusion criterion, placement condition

Let $(P, \rho) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+$, \mathcal{A}_S fulfills the exclusion criterion of parameters (P, ρ) $(j, k) = \mathcal{A}_S(x) \in \mathcal{J}_{\mathcal{A}_S} \Rightarrow$ $\begin{cases} x \in]\nu_{jk} - 2^{-j}\rho, \nu_{jk} + 2^{-j}\rho] \\ (j', k') = \mathcal{A}_S(x') \in \mathcal{J}_{\mathcal{A}_S} \text{ with } j' < j \Rightarrow x' \notin]\nu_{jk} - 2^{-j}P, \nu_{jk} + 2^{-j}P] \end{cases}$

Problems entailed by allocation $\ensuremath{\mathcal{A}}$:

- Some points are badly located : too far from their wavelet centers.
- Linear system generated with previous allocation scheme may not be invertible.
- Need to extract the largest subtree A_S ⊂ A such that we can compute the coefficients c_{ij} ∀(i, j) ∈ J_S.
- \Rightarrow Just apply a geometric criterion to delete bad samples.

Exclusion criterion, placement condition

Let $(P, \rho) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+$, \mathcal{A}_S fulfills the exclusion criterion of parameters (P, ρ) $(j, k) = \mathcal{A}_S(x) \in \mathcal{J}_{\mathcal{A}_S} \Rightarrow$ $\begin{cases} x \in]\nu_{jk} - 2^{-j}\rho, \nu_{jk} + 2^{-j}\rho] \\ (j', k') = \mathcal{A}_S(x') \in \mathcal{J}_{\mathcal{A}_S} \text{ with } j' < j \Rightarrow x' \notin]\nu_{jk} - 2^{-j}P, \nu_{jk} + 2^{-j}P] \end{cases}$

Problems entailed by allocation $\ensuremath{\mathcal{A}}$:

- Some points are badly located : too far from their wavelet centers.
- Linear system generated with previous allocation scheme may not be invertible.
- Need to extract the largest subtree A_S ⊂ A such that we can compute the coefficients c_{ij} ∀(i, j) ∈ J_S.
- \Rightarrow Just apply a geometric criterion to delete bad samples.

Exclusion criterion, placement condition

Let $(P, \rho) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+$, \mathcal{A}_S fulfills the exclusion criterion of parameters (P, ρ) $(j, k) = \mathcal{A}_S(x) \in \mathcal{J}_{\mathcal{A}_S} \Rightarrow$ $\begin{cases} x \in]\nu_{jk} - 2^{-j}\rho, \nu_{jk} + 2^{-j}\rho] \\ (j', k') = \mathcal{A}_S(x') \in \mathcal{J}_{\mathcal{A}_S} \text{ with } j' < j \Rightarrow x' \notin]\nu_{jk} - 2^{-j}P, \nu_{jk} + 2^{-j}P] \end{cases}$

Problems entailed by allocation $\ensuremath{\mathcal{A}}$:

- Some points are badly located : too far from their wavelet centers.
- Linear system generated with previous allocation scheme may not be invertible.
- Need to extract the largest subtree A_S ⊂ A such that we can compute the coefficients c_{ij} ∀(i, j) ∈ J_S.
- \Rightarrow Just apply a geometric criterion to delete bad samples.

Exclusion criterion, placement condition

Let $(P, \rho) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+$, \mathcal{A}_S fulfills the exclusion criterion of parameters (P, ρ) $(j, k) = \mathcal{A}_S(x) \in \mathcal{J}_{\mathcal{A}_S} \Rightarrow$ $\begin{cases} x \in]\nu_{jk} - 2^{-j}\rho, \nu_{jk} + 2^{-j}\rho] \\ (j', k') = \mathcal{A}_S(x') \in \mathcal{J}_{\mathcal{A}_S} \text{ with } j' < j \Rightarrow x' \notin]\nu_{jk} - 2^{-j}P, \nu_{jk} + 2^{-j}P] \end{cases}$

Last step : System solving

Finding the coefficients c_{ij} :

- Once bad points have been removed we obtain a smaller system.
- Solve square linear system of size N_S:

$$\sum_{(j,k)\in\mathcal{J}_S}c_{jk}\Psi_{jk}(x)=f(x)\;\forall x\in\mathcal{X}_S$$

$$\Leftrightarrow \begin{cases} x_i = \mathcal{A}_S^{-1}(j_i, k_i) \ \forall \ i \in [0, N_S - 1] \\ \sum_{i=0}^{N_S - 1} c_{j_i k_i} \Psi_{j_i, k_i}(x_i) = f(x_i) \ \forall i \ \text{in} \ [0, N_S - 1] \end{cases}$$
Last step : System solving

Finding the coefficients c_{ij} :

- Once bad points have been removed we obtain a smaller system.
- Solve square linear system of size N_S:

$$\sum_{(j,k)\in\mathcal{J}_{\mathcal{S}}}c_{jk}\Psi_{jk}(x)=f(x)\;orall x\in\mathcal{X}_{\mathcal{S}}$$

$$\Leftrightarrow \begin{cases} x_i = \mathcal{A}_S^{-1}(j_i, k_i) \ \forall \ i \in \llbracket 0, N_S - 1 \rrbracket \\ \sum_{i=0}^{N_S - 1} c_{j_i k_i} \Psi_{j_i, k_i}(x_i) = f(x_i) \ \forall i \ \text{in} \ \llbracket 0, N_S - 1 \rrbracket \end{cases}$$

Last step : System solving

Finding the coefficients c_{ij} :

- Once bad points have been removed we obtain a smaller system.
- Solve square linear system of size N_S:

$$\sum_{(j,k)\in\mathcal{J}_{\mathcal{S}}}c_{jk}\Psi_{jk}(x)=f(x)\;orall x\in\mathcal{X}_{\mathcal{S}}$$

$$\Leftrightarrow \begin{cases} x_i = \mathcal{A}_S^{-1}(j_i, k_i) \ \forall \ i \in \llbracket 0, N_S - 1 \rrbracket \\ \sum_{i=0}^{N_S - 1} c_{j_i k_i} \Psi_{j_i, k_i}(x_i) = f(x_i) \ \forall i \ \text{in} \ \llbracket 0, N_S - 1 \rrbracket \end{cases}$$

ヘロト 人間ト 人造ト 人造ト

Results

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ 18/21

Mean execution time (10k reconstructions)

<ロト < 部ト < 言ト < 言ト 言 の Q () 19/21

averaged L2 norm of the residue || f' - f ||

samples

<ロト < 部 ト < 言 ト く 言 ト こ の Q () 19/21

Error and performance versus order and number of samples

averaged Linf norm of the residue

<ロト<部ト<国ト<国ト<国ト 19/21

Conclusion and extensions

• New multiresolution framework for scattered data interpolation.

Conclusion and extensions

- New multiresolution framework for scattered data interpolation.
- Can be extended to more dimensions.

Conclusion and extensions

- New multiresolution framework for scattered data interpolation.
- Can be extended to more dimensions.
- Can be adapted to any existing interpolating functions.

- New multiresolution framework for scattered data interpolation.
- Can be extended to more dimensions.
- Can be adapted to any existing interpolating functions.
- Incremental framework proposed, no need to solve the whole linear system at each sample added.

Christophe Bernard.

Wavelets and ill posed problems: optic flow and scattered data interpolation.

PhD Thesis, pages 151-228, 2001.

► G. Deslauriers; S.Dubuc.

Interpolation dyadique.

Fractales, dimensions non entières et applications, pages 44-55, 1987.

► G. Deslauriers; S.Dubuc.

Symmetric iterative interpolation processes.

Constructive approximation, 5:49-68, 1989.

Christophe P. Bernard; Stéphane G. Mallat; Jean-Jacques Slotine.
Scattered data interpolation with wavelet trees.

Curve and Surface Fitting, Saint-Malo, pages 1–3, 2002.

Any questions ?