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Interpolating wavelets

Interpolating wavelets
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Interpolating wavelets

Building interpolation wavelets

Classical interpolation tools can be fitted into a MRA framework.

Interpolating scaling function

ϕ is an interpolating scaling function ⇔

{
ϕ(0) = 1
ϕ(k) = 0 ∀ k ∈ Z∗

Built as infinite convolution of discrete filters ϕ̂(ν) =
∏+∞

k=1 m0( ν2π )

Interpolating property can be expressed as m0(ν) + m0(ν + π) = 1

ϕ has compact support ⇔ hn is finite ⇒ Approximation order is finite

Families : Splines functions, Deslauriers-Dubuc interpolating wavelets
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Deslauriers-Dubuc interpolating wavelets
Lagrange interpolation :

Can explicitly compute filter coefficients hn with Lagrange polynomials of
order p ∀n ∈ J−2p + 1, 2p − 1K.

Dyadic refinement scheme :

Low pass filter coefficients hn

m0[0] = 1 m0[2k] = 0 if k ∈ Z∗ m0[k] = 0 if |k| ≥ 2p

m0[±(2k − 1)] =
(−1)k+1(2p)!2

24pp!2(p − k)!(p + k − 1)!(2k − 1)
∀k ≤ p
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Generation of the coefficients

Just evaluate Lagrange polynomials to get the hn :
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Generation of the scaling function
Generate ϕp at resolution 2−j with j convolutions δx,0 ∗ hp

n ∗ · · · ∗ hp
n :

5/21



Generation of the scaling function
Generate ϕp at resolution 2−j with j convolutions δx,0 ∗ hp

n ∗ · · · ∗ hp
n :

5/21



Generation of the scaling function
Generate ϕp at resolution 2−j with j convolutions δx,0 ∗ hp

n ∗ · · · ∗ hp
n :

5/21



Generation of the scaling function
Generate ϕp at resolution 2−j with j convolutions δx,0 ∗ hp

n ∗ · · · ∗ hp
n :

5/21



Generation of the scaling function
Generate ϕp at resolution 2−j with j convolutions δx,0 ∗ hp

n ∗ · · · ∗ hp
n :

5/21



Generation of the scaling function
Generate ϕp at resolution 2−j with j convolutions δx,0 ∗ hp

n ∗ · · · ∗ hp
n :

5/21



Generation of the scaling function

Generate ϕp at resolution 2−j with j convolutions δx,0 ∗ hp
n ∗ · · · ∗ hp

n :

5/21



Properties
Basis definition in the dyadic case:

Scaling function : ϕ(x) is of order p
Mother wavelet : Ψ(x) = ϕ(2x − 1)

Wavelet family : Ψjk = Ψ(2jx − k)

Basis : B0 = {Ψjk | j = 0︸ ︷︷ ︸
V0

or (j , k) ∈ N∗ × (2Z + 1)︸ ︷︷ ︸
Wj−1

}

Properties :

Symmetry
Finite support ⊂ [−2p + 1

2 , 2p − 1
2 ]

No orthogonality ⇒ need to solve a linear system
2p vanishing moments

Wavelets on the interval (boundary problems) :

Take boundary filters of lower order
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Wavelets on the interval : case Ω = [0, 1]

Boundary filters : Lowest resolution => Highest resolution

V0
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Wavelets on the interval : case Ω = [0, 1]

Boundary filters : Lowest resolution => Highest resolution

W4
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Approximation in wavelet bases

Wavelet tree approximation
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Approximation in wavelet bases
Different approximations possible in wavelet bases :

Exact wavelet decomposition : f =

∞∑
j=0

∑
k∈Z

〈f | Ψjk〉Ψjk =

∞∑
j=0

∑
k∈Z

djk Ψjk

Linear approximation Aαlin: f '
J∑

j=0

∑
k∈Z

djk Ψjk

Non-linear approximation Aα (best N-terms approximation) :

|dj0,k0 | ≥ |dj1,k1 | ≥ · · · ≥ |djN−1,kN−1 | ⇒ f '
N∑

i=0

dji ,ki ψji ,ki

Tree approximation T α : Build a wavelet tree with following relationship

(j, k) R (j ′, k ′)⇔

{
j ′ = j + 1
k ′ ∈ {2k − 1, 2k + 1}

Tree approximation spaces are close to non-linear spaces (because
singularities are located).
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Example of wavelet tree structure
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Scattered data interpolation

Scattered data interpolation
using wavelet trees
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Scattered data interpolation
Scattered data interpolation with wavelet trees:

Input: Set of N samples X ⊂ R with corresponding sample values
fX = {f (x) | x ∈ X}
Samples are not aligned with wavelet centers 2−jk
Output: JS ⊂ (0,Z) ∪ N∗ × (2Z + 1) and coefficients cjk st.
∀ (j ′, k ′) ∈ N∗ × (2Z + 1) ∃ (j, k) ∈ JS (j, k) R (j ′, k ′)

f '
∑

(j,k)∈JS

cjk Ψjk

Three step tree interpolation method:

Allocation : Build one-one mapping from X to wavelet basis BJ
Subsystem selection : Remove bad samples with a geometric criterion,
new wavelet basis is BJS ⊂ BJ
System solving: Solve a linear system to find cij ∀(i , j) ∈ JS
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Example function

f(x) = cos(75x) ex cos(10x) on Ω = [0, 1] approximated at order
p = 10 with up to N = 100 uniformly distributed samples :
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First step : Allocation

Allocation :

The goal is to select a wavelet subfamily to build an interpolating basis
BJ ⊂ B0.

Build a subfamily which provides a function that is a priori smooth ⇒
Low resolution wavelets should be preferred.
Select high resolution wavelets only where the density of measures is high.

Admissible allocation
A : X → JA ⊂ (0,Z) ∪ N∗ × (2Z + 1) is an admissible allocation ⇔{
∀ xi ∈ X , A(xi ) = (j, k) ⇒ x ∈ Bjk (attraction basin of the wavelet Ψjk )

A(x) = (j, k), x ∈ Bj′k′ with j ′ < j ⇒ ∃x ′ ∈ X such that A(x ′) = (j ′, k ′)
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First step : Allocation

Order on the allocations
A ≥ A′ ⇔ ∃j0 ∈ N such that{

Allocations are the same up to level j0
∀k ∈ Z (j0, k) ∈ JA ⇒ |A−1(j0, k)− νj0,k | ≤ |A′−1(j0, k)− νj0,k |

Theorem
Let X be a set of measure points. Then at least one of the
following sentence is true:

∃! optimal allocation A
∃ two equivalent allocations A ∼ A′
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Second step : Subsystem selection
Problems entailed by allocation A :

Some points are badly located : too far from their wavelet centers.
Linear system generated with previous allocation scheme may not be
invertible.
Need to extract the largest subtree AS ⊂ A such that we can compute
the coefficients cij ∀(i , j) ∈ JS .

⇒ Just apply a geometric criterion to delete bad samples.

Exclusion criterion, placement condition
Let (P, ρ) ∈ R∗+ × R∗+, AS fulfills the exclusion criterion of parameters (P, ρ)

(j, k) = AS(x) ∈ JAS ⇒{
x ∈ ]νjk − 2−jρ, νjk + 2−jρ]

(j ′, k ′) = AS(x ′) ∈ JAS with j ′ < j ⇒ x ′ 6∈ ]νjk − 2−jP, νjk + 2−jP]

With Ω = [0, 1] the system if invertible is AS satisfies a ( 1
2 ,

1
2 )-placement

condition.
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Last step : System solving

Finding the coefficients cij :

Once bad points have been removed we obtain a smaller
system.
Solve square linear system of size NS :∑

(j,k)∈JS

cjkΨjk(x) = f (x) ∀x ∈ XS

⇔


xi = A−1

S (ji , ki ) ∀ i ∈ J0, NS − 1K
NS−1∑
i=0

cji ki Ψji ,ki (xi ) = f (xi ) ∀i in J0, NS − 1K
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Conclusion and extensions

New multiresolution framework for scattered data
interpolation.

Can be extended to more dimensions.
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