
INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 1

Efficient 3D Isotropic Volume Reconstruction
Based On 2D Localized Ultrasound Images

Jean-Baptiste Keck, Student, Ensimag
Matthieu Chabanas, Supervisor, TIMC-IMAG Laboratory

TIMC-IMAG
Abstract—A miniature 3D tracked ultrasonic probe has been developed to acquire intra-articular cartilage images under
arthroscopic surgical conditions. The aim is to detect cartilaginous lesions (arthritis) and quantify their precise sizes
and locations to help the clinician in his diagnostic and his therapeutic decision making. The ultrasonic transducer is
tracked by an optical sensor, which permits to find location and orientation of each 2D US images in a common 3D
spacial reference. Near two thousands images are acquired when scanning a cartilage surface. An interesting tool is to
rebuild a 3D isotropic volume (cubic voxels) with those images, allowing further processing. Conventional 3D ultrasound
algorithms have low computational complexity but the huge amount of data generated makes it difficult to compute
results within reasonable time on classical computers. In this paper we investigate the possibilities of regenerating a 3D
isotropic volume with the help of GPGPU (CUDA) by adapting existing algorithms to massive parallelism provided by
modern everyday GPUs.

Index Terms—Introduction to Lab Research, Arthritis, General Purpose Computing on Graphics Processing Unit,
Ultrasound Imaging, Isotropic Volume Reconstruction.

F

1 INTRODUCTION

F REEHAND three-dimensional ultrasound
imaging is a highly attractive research area

because it is capable of volumetric visualization
and analysis of tissue and organs. Conventional
two-dimensional ultrasound imaging has been
widely used for many clinical applications
such as medical diagnosis and image-guided
surgery. In comparison with Computed Tomog-
raphy (CT) and Magnetic Resonance Imaging
(MRI), ultrasound imaging is non invasive,
real time, portable and low cost. However,
2D ultrasound imaging fails to offer clinicians
whole volume data for visualization and anal-
ysis. Thus three-dimensional ultrasound imag-
ing systems has been developed to overcome
those limitations by constructing various 3D
datasets. Several approaches for constructing
3D ultrasound volume data have been re-
ported. These approaches can be classified into

• M. Keck is a student at Ensimag, Grenoble, France.
• M. Chabanas is in the team Gestes Médico-Chirurgicaux Assistés

par Ordinateur in the TIMC-IMAG Laboratory, University of
Grenoble, France.

three categories : dedicated 3D probes, mechan-
ical scanning approach, and freehand scanning
approach. Dedicated 3D probes can provide
3D data in real time but they are expensive
and have limitations in scanning large volume
organs. The mechanical scanning approaches
usually use conventional 2D transducers which
are translated and rotated with stepping mo-
tors. This design creates limitations in term of
their scanning range. Finally, freehand ultra-
sound use conventional 2D transducers in pair
with a positioning sensor to save position and
orientation of each acquired image. Freehand
3D ultrasound has received increasing atten-
tion for it’s low cost and flexibility, as it allows
the user to manipulate and view the desired
anatomical section freely.

Cartilage diseases represent a major Public
Health problem that will worsen due to the
ageing of the population and the obesity epi-
demic. The development of new diagnostic and
therapeutic strategies therefore appears to be
essential to address this issue. The research
project “Computer Assisted Measures and In-
terventions for Innovative Therapeutic of Carti-



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 2

lage Diseases” led to the development of a new
medical device dedicated to the therapy of the
cartilaginous tissue: a navigated multimodal
arthroscopic environment. It combines MRI or
arthro-CT with video and ultrasound. A special
probe was specially designed to acquire intra-
articular cartilage images under arthroscopic
surgical conditions with the aim of reconstruct-
ing the cartilage surface.

During scanning a sequence of US images
are captured along with their positions and ori-
entations, synchronously. Those data are then
used to reconstruct a 3D volume by using vari-
ous interpolation or approximation algorithms.
The reconstruction algorithm plays a key role
in the construction of three-dimensional ultra-
sound volume data with higher image quality
and faster reconstruction speed.

Even if conventional 3D reconstruction al-
gorithms have low computational complexity,
the huge amount of data generated by a single
scan (thousands of 2D images) makes it dif-
ficult to compute volume data in reasonable
clinical time on classical computers. This paper
aims to speed up 3D volume processing by
adapting existing reconstruction algorithms to
the massive parallelism provided by nowa-
days affordable GPUs. This is achieved through
General Purpose Computing on Graphics Pro-
cessing Unit (GPGPU), a concept that has been
well developed and widely adopted during
the last decade and that continues its growth.
The Open Computing Language (OpenCL) is
the currently dominant open general-purpose
GPU computing language. The dominant pro-
prietary framework is the Compute Unified
Device Architecture (CUDA). Although CUDA
requires a Nvidia CUDA compatible graphic
card, we choose it because of its more ma-
ture status (performance and debugging tools)
but algorithms are easily adaptable to OpenCL
as well, allowing executions on Nvidia’s and
AMD’s graphic cards, and even Integrated
Graphics Processors (IGPs).

2 SYSTEM OVERVIEW

2.1 System setup
The freehand 3D ultrasound imaging system
consists of three modules : a 2D ultrasound

Fig. 1. A classical freehand ultrasound imaging
system setup. Image taken from T. Wen et al.
[1].

scanner specially designed to acquire intra-
articular cartilage US images under arthro-
scopic surgical conditions, an optical position
and orientation sensor and a work station with
custom designed software for data acquisition.
The volume reconstruction is for the moment
done as a post-process in another specially
designed piece of software. The portable ul-
trasound scanner consists of 64 axis-aligned
transducers. Although it is a freehand system,
the axe is slightly rotated by a stepper motor
to achieve a greater scanning area. The trans-
formation due to the rotation of the motor is
taken in account.

Fig. 2. The freehand ultrasound system acquir-
ing intra-articular cartilage images under arthro-
scopic surgery conditions.

The receiver of the spacial sensing device is
attached to the hand-held probe of the ultra-
sound scanner. Another receiver is attached to
the head of the femur. This allow us to record



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 3

the position and orientation of the scanned
US images with regard to the femur. During
data acquisition, spacial data and digitalized
2D scans are simultaneously recorded and col-
lected. Images which attack rate is too high are
discarded as there is too much distorsion in the
ultrasound signal that is sent back to the probe.
Fig.2 and fig.3 show the probe in action and a
more detailed schematic of the system.

Fig. 3. The freehand ultrasound imaging system
setup, including the optical position sensor, two
rigid bodies (reflectors), the motorized freehand
arthroscope and the scanning range of the 64
transducers. The two scans on the right are
discarded.

2.2 Data acquisition

After signal processing 2D slices of logical size
Lx x Ly = 64×1296 pixels are generated. As the
transducers are εx = 205µm wide, the images
have a physical size of Px = 64 εx = 19.12mm.
The precision on the other axe is εy = 18µm,
and thus the images have a physical height of
Py = 1296 εy = 23.328mm. For the images we
will use this convention : we place the origin
at the top-left with the x-axis oriented towards
the right and the y-axis oriented towards the
bottom. We define Xp = (xp, yp, 0, 1)

T the homo-
geneous vector that describes logical position
of each pixel (xp, yp) in an image whose origin
is at (Ox, Oy). Sx and Sy are the pixel spacing
on each axis and are defined as Sx = Px

Lx
and

Sy =
Py

Ly
.

Mmodel =


Sx 0 0 Ox

0 Sy 0 Oy

0 0 0 0
0 0 0 1

 (1)

The physical position of each pixel in its local
physical coordinate system can be calculated as
the following :

Xm =Mmodel Xp (2)

MRP is the transformation matrix from the
optical position sensor reflector (R) to origin
of the scanned image plane (P), MER is the
transformation matrix from the optical emitter
(E) to (R) and MV E is the transformation matrix
from the voxel coordinate of the reconstructed
volume (V) to (E). Note that all those matrices
are 4x4 homogeneous matrices.
MRP is initially unknown and must be ob-

tained through a calibration process. For a de-
tailed discussion for this issue, one can refer to
Mercier et al. [2].

With those matrices and (1), the whole for-
ward transformation can be written as :

Xv =MV EMERMRP Xm =M Mmodel Xp (3)

The specially designed software used to ac-
quire data can export each image in a MHD file
format (MetaImage Format in ITK). Mhd files
contain header informations, including trans-
formation matrix M and size, and raw image
data.

Fig. 4. A typical 2D ultrasound image of intra ar-
ticular cartilage. The white band is the cartilage
interface.



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 4

Fig. 5. Scanned US images after transforma-
tion (3). Here the cartilage interface was recon-
structed from MRI data.

3 VOLUME RECONSTRUCTION

3.1 Reconstruction steps
Here is were my work began. Given the sam-
pled images from first step {Ii} and the trans-
formation matrices {Mi}, the aim was to recon-
struct 3D volume data.

Here is the flow diagram of freehand 3D
ultrasound volume reconstruction :

Step 1 : Data loading
• Parse mhd files
• Load image raw data
• Load transformations

Step 2 : Data preprocessing
• Position filtering
• Image filtering
• Image cropping
• Image data conversion

Step 3 : Grid construction
• Determinate grid size

Step 4 : Volume Filling
• Bin-filling
• Hole-filling

3.2 Data loading
Loading data is not as easy as one might think
and can rapidly become a serious bottleneck
compared to what GPGPU can provide in
terms of speedup. As each US scan is exported
in its own mhd and raw file, thousands of mhd
files have to be parsed to get each transfor-
mation matrix {Mi} and get the path to the
corresponding image data and load the raw
image {Ii}. With two thousands images this
operation can easily take 1 to 2 minutes on
regular HDD1. One easy fix would be to merge
all the image data into a single raw file, and
the transformation matrices in another raw file
as well, or simply keep the generated data in
the computer memory when doing on the fly
or immediate post-processing. Data locality is
something we do not only want on the disk,
but in the memory too. This introduces an
important concept : Array of Structures (AoS)
versus Structure of Arrays (SoA). In GPGPU,
memory access are a serious bottleneck when
done improperly and SoA are often a better
solution than AoS.

For example, a list of 3D vectors can be
represented with 3 arrays, one for each of
its coordinates (SoA), or with an array of 3D
vector structures (AoS) :

Structure of Arrays (SoA):
struct vectors {

float x[100];
float y[100];
float z[100];

}

struct vectors v;

Array of Structures (AoS):
struct vector {

float x;
float y;
float z;

}

struct vector v[100]

1. Hard Disk Drive



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 5

When using a structure of arrays we have
memory spacial locality between each of the
vector coordinates. When a memory read occur
in the global memory of a GPU, a large chunk
of data is read (most of the time 128 bytes mem-
ory segments aligned on 128-byte address).
This is because the GPU is a massive parallel
architecture. In CUDA, threads are grouped into
thread blocks, which are assigned to multipro-
cessors on the device. During execution there is
a finer grouping of threads into warps. Multi-
processors on the GPU execute instructions for
each warp in Single Instruction, Multiple Data
fashion. The warp size of current CUDA-capable
GPUs is 32 threads. The device coalesces global
memory loads and stores issued by threads of
a warp into as few transactions as possible to
minimize memory bandwidth. Any misaligned
access by a half warp of threads results in 16
separate 32-byte transactions. If only 4 bytes
are requested per 32-byte transaction (a simple
integer or float), we should expect the effec-
tive bandwidth to be reduced by a factor of
eight. For strided global memory access things
get even worse, and get worser when the
stride get bigger. That is not surprising because
when concurrent threads simultaneously access
memory addresses that are very far apart in
physical memory, then there is no chance for
the hardware to combine the accesses. Strides
entailed by Array of Structures is the reason
why we want to use Structure of Arrays, where
data is nicely arranged to be accessed in a
parallel manner.

Taking this into account, we decompose
the 4x4 homogeneous transformation matrices
{Mi} into a structure of 12 arrays, the 3x3 inner
rotation matrix coefficients r1 through r9, and
the 3D offset vector coefficients (x, y, z) :

Mi =


r1i r

2
i r

3
i xi

r4i r
3
i r

5
i yi

r5i r
6
i r

7
i zi

0 0 0 1

 (4)

The matrix is initially stored in a row-major
manner, this is why we use such indexing

convention for ri.

The resulting struct is :
struct transformations {

//offsets
float *x;
float *y;
float *z;

//3x3 matrix coefficients
float *r1;
float *r2;
...
float *r9;

}

Image data do not require such memory re-
organization as it is already stored and loaded
as a row-major matrix of black and white pixels
represented by simple precision floats. We just
pay a special care to load the images in a
big contiguous memory space and not to load
them at random locations into the memory. Of
course if the images were color images, we
would have separated the red, green and blue
channels into three separate arrays in a SoA
manner.

This is not the only thing to take into account
when loading data into memory when using
GPGPU. When allocating CPU memory (RAM)
that will be used to transfer data to the GPU
memory (VRAM) for computing purpose, there
are two types of memory to choose from :
pinned (page-locked) and non-pinned mem-
ory. Pinned memory is memory specially allo-
cated with a GPGPU dedicated malloc func-
tion (cudaMallocHost in CUDA), which pre-
vents the memory from being swapped out
and provides improved transfer speeds. Non-
pinned memory is memory allocated using the
classical malloc function in C, or using the
new operator in C++. Pinned memory is much
more expensive to allocate and deallocate but
provides higher transfer throughput for large
memory transfers. Empirically, using pinned
memory only makes sense when the amount
of memory transferred each way is larger than
16 MB. In our case with 2000 US scans, we have
664MB of float images, and 96Ko of transforma-
tions data so we just go for the pinned memory



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 6

(a) Original
image

(b) Filtered image

Fig. 6. An example of ultrasound image smoothing techniques taken from A. Babakhani et al. [3]

for the images.
At the end of this step, we have 12 arrays of

transformation coefficients stored contiguously
in the CPU memory in a non pinned manner,
and one big contiguous array of floats repre-
senting the images that is pinned in the CPU
memory.

3.3 Data preprocessing
Data preprocessing can include image crop-
ping, position filtering, image filtering and im-
age data conversion.

3.3.1 Image cropping
Sometimes it is needed to crop the ultrasound
images to select a region of interest. When
doing this, we must not forget to keep or
update image offset in local image coordinates
for further processing.

3.3.2 Position filtering
Position filtering is needed because the position
sensor device is susceptible to interferences
and because our miniature probe was prone to
bending. Thus the variation of probe position
between consecutive slices can not be avoided.
Filtering can be done with the method pro-
posed by Raul et al. [4].

3.3.3 Image smoothing
Volume reconstruction algorithms require accu-
rate edge maps for good performance, however
highly signal dependant nature of ultrasound
speckle makes these difficult to obtain. Vari-
ous filtering techniques have been developed

to suppress speckles in order to improve the
quality of images. Among them, the nonlin-
ear filters have recently received an increas-
ing interest, due to some of their important
capabilities over linear filters. For example, A.
Babakhani et al. [3] proposed in 2006 an ex-
tensive comparison of such non linear filters
applied to ultrasound imaging and 3D volume
reconstruction, including non linear Gaussian
diffusion filters (NLG), anisotropic filters with
level set (ANL), offset filters with level set
(OFS) and pure morphological filters (PUM).
Fig.6 shows results of such filtering techniques.

3.3.4 Data conversion
Most of current and past years GPUs have
512MB to 2GB embedded memory (VRAM).
Thus a high volume of image data can be
problematic when doing volume reconstruction
on GPU because the grid needed to reconstruct
the volume has to be stored too and memory
should be kept for the GPU program execution
stack. In addition to that, memory is already
taken by the system through the graphic card
driver when using a graphical desktop envi-
ronment. One simple solution is to execute the
algorithm on the GPU with smaller groups
of images each after another but transferring
data from CPU memory to GPU memory is
rather time-consuming. Typical transfer rates
are 3Gbps for non-pinned memory and 6Gbps
for pinned memory. We chose an even simpler
method for reducing images impact on mem-
ory : For now our image were represented as
an array of floats between 0.0 and 255.0 but we
don’t need such precision. Thus we decided to



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 7

convert our 4 bytes floats into 1 byte unsigned
chars, letting the initial 664MB images memory
footprint fall down to only 166MB. This is done
in a simple CUDA kernel, as it is a trivially
parallelizable operation. To do this, we just
have to allocate three more arrays, a 166MB
pinned memory array on the CPU, a 166MB
array and a 664MB array on the GPU, transfer
initial float data to GPU memory, execute the
kernel, transfer back the casted data to the CPU
memory and finally free the old float datas on
CPU and GPU.

In this step, other operations are possible,
like applying a band-pass filter on the his-
togram region of interest and then histogram
equalization.

Fig. 7. A simple CUDA kernel example perform-
ing image data conversion from float to un-
signed char.

3.3.5 Our implementation
Due to a lack of time on this project, neither
signal filtering nor image filtering have been
considered here even if such filtering is possi-
ble on modern GPUs. Image cropping was not
necessary.

Fig.7 shows a simple kernel performing the
data conversion operation. Note the SIMD2

coding style : there are simultaneous parallel
computations, but only a single instruction at
a given moment. Lets say Ni is the number
of images we loaded at the first step. The
dataSize variable counts the total number of
pixels (dataSize = Ni × Lx × Ly assuming we
did not crop anything) and the id is a variable
designating the current thread, starting at 0.
Since the max id can exceed the number of
pixels dataSize, a simple if statement prevent
the program to access prohibited memory.

2. Single Instruction, Multiple Data

3.4 Grid construction
3.4.1 Computing bounding box
The third step in the reconstruction proce-
dure is the establishment of coordinate sys-
tem configuration for the reconstruction in-
cluding its origin, its dimension and volume
grid spacing. As our system has no need to
predefine a volume before data acquisition
we can use a simple bounding box technique
as proposed by T. Wen et al. [1]. A bound-
ing box can be represented with two points
only, Xmin = (xmin, ymin, zmin)

T and Xmax =
(xmax, ymax, zmax)

T as showed in figure 8.

Fig. 8. The resulting bounding box defined by
Xmin and Xmax. Image adapted and modified
from T. Wen et al. [1]

With the notations of Eq.2 and Eq.3, the
algorithm to find the bounding box is pretty
straightforward :

Data: Xmin ← (+∞,+∞,+∞)
Xmax ← (−∞,−∞,−∞)

for each image Ii do
for each of the four corner vertices vj of Ii
do

Xj
p ← image coordinate of vj ;

Xj
v ←Mi Mmodel X

j
p ;

if point Xj
v outside of the bounding

box then
Update Xmin and Xmax;

end
end

end
Algorithm 1: Bounding box algorithm



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 8

The test to know whether the point is in
the bounding box or not consists of 6 scalar
comparisons, and thus this algorithm can be
executed safely on CPU without any perfor-
mance drawbacks. The origin of the volume
is then placed at Xmin.

At the end of this algorithm, all US images
are contained in this bounding box and Xmin

and Xmax are reached by one ultrasound image
corner at least once.

The next step is to choose a voxel size. This
is a critical parameter because the memory
footprint of the grid is what hinders GPGPU
volume reconstruction.

3.4.2 Choosing a voxel size
Lets assume Wb×Hb×Lb are the width, height
and length of the generated bounding box,
Wg ×Hg × Lg are the width, height and length
of the grid (in voxels) and δv is the cubic voxel
size. With those notations, we need to allocate
at least a grid of Nv = Wg × Hg × Lg =
Wb

δv
× Hb

δv
× Lb

δv
voxels.

Thus, memory cost is cubical with the num-
ber of voxel subdivisions Ns. Each time we
want to double precision, we have to pay eight
times more memory.

TABLE 1
Memory footprint for a 50× 50× 50mm
bounding box and unsigned char voxels

log2(Ns) Ns δv(µm) Nv Grid memory

12 4096 12.2 236 68.7GB

11 2048 24.4 233 8.59GB

10 1024 48.8 230 1.07GB

9 512 97 227 134MB

8 256 195 224 16.8MB

7 128 390 221 2.1MB

Table 1 shows grid memory consumption
for a bounding box which is approximately
the size of the bounding box obtained when
scanning our intra-articular cartilage. We see
that when the voxel size δv goes under 100µm
the memory begins to cause some problems to
our GPU memory. Even if some professional
graphic cards can have up to 12GB of memory,
a simple δv set to 50µm can cause trouble. In

fact, as it is explained later in this paper, even
simple volume reconstruction algorithm will
require at least three such grids in the bin-
filling stage. Figure 14 shows an overview of
such GPU memory layout.

Fig. 9. A cubic bounding box split with Ns = 8

For example to perform an average in a Sin-
gle Instruction, Multiple Data manner, we need
at least two unsigned int grid and one unsigned
char grids which almost multiply the table 1
grid memory footprint by 10 when assuming
unsigned int are 4 bytes and unsigned char 1
byte. That means that δv = 50µm entails at least
10.7GB memory consumption just for the grids
on the GPU memory. Adding to that the size of
the images, the system graphical environment
load and the execution stack and our 12GB
professional graphic card wont survive under
such heavy memory load.

The only solution is to split the grid into
subgrids on the GPU side, and keep the whole
voxel grid on the CPU side. The amount of
splitting depends of the graphic card runtime
available memory and the reconstruction algo-
rithm used.

3.4.3 Splitting the grid

To ease grid splitting we round each grid side
voxel size Wg, Hg, and Lg to upper power of
two to get a grid surrounding our bounding
box :

WG = 2dlog2(Wg)e (5)
HG = 2dlog2(Hg)e (6)
LG = 2dlog2(Lg)e (7)



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 9

This is far from being an optimal splitting
method as a simple layer of voxel in each
directions can enlarge the grid by a factor of
8 and thus multiply by 8 memory footprint
and computation time. If execution time is
still critical after having ported volume recon-
struction algorithms to GPGPU, adapting the
code to handle different grid sizes is worth the
investment.

One of the greatest benefit of having com-
puted the upper power of two grid is that we
can divide the grid in power of two subgrids
and all the subgrids will have the same dimen-
sion, simplifying the implementation. More-
over this could be used for further optimisation
when using multiresolution grids to reduce
global grid memory footprint.

Fig. 10. The same cubic grid split in subgrids
with Sx = 4, Sy = 2 and Sz = 2. One of the 16
subgrids is represented in grey.

Fig.10 shows the same grid as before. Be-
cause Wg, Hg and Lg were already powers of
two, the upper power of two grid is the same.
The grid is split with three parameters, Sx, Sy

and Sz which represent the splitting amount
along the x, y and z-axis (width, height, and
length). Those parameters are powers of two.
The resulting subgrid is like the original grid,
a power of two grid. The numbers of subgrids
NSG is given by the simple equation :

NSG = Sx Sy Sz (8)

The size of those subgrids is given by :

WSG =
WG

Sx

(9)

HSG =
HG

Sy

(10)

LSG =
LG

Sz

(11)

The full grid is, like the images, stored in a
contiguous array in the CPU memory. Access-
ing the voxel (i,j,k) is done by accessing the
voxel at position kxWGxHG + jxWG + i in the
array. Because we want to keep data locality
within the grid, we give splitting priority on
the z-axis, the y-axis and finally the x-axis.

Once we have chosen a volume reconstruc-
tion algorithm, we know exactly how much
space we will need for a given voxel size δv.
After fetching GPU available memory, we can
compute a minimum grid splitting ratio Sr.
As we can only divide by a power of two,
we take the upper power of two of this ratio,
SR = 2dlog2(Sr)e. Algorithm 2 is used to spread
the splits SR along the three axis.

Data: The size of the grid WG = 2p,
HG = 2q and LG = 2r

The minimum upper power of two
splitting ratio SR = 2s

Result: The splitting ratio on each axis
Sx = 2i, Sy = 2j and Sz = 2k

i← 0; j ← 0; k ← 0;
while s > 0 do

if p>q & p>r then
i← i+ 1;
p← p− 1;

else
if q>r then

j ← j + 1;
q ← q − 1;

else
k ← k + 1;
r ← r − 1;

end
end
s← s− 1;

end
Algorithm 2: Splitting algorithm



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 10

4 VOLUME FILLING
Volume filling is the key procedure in the free-
hand 3D ultrasound systems [5], [6], [7]. Var-
ious types of reconstruction algorithms have
been reported and evaluated in [8]. These al-
gorithms can be grouped into three categories :
Voxel Nearest Neightbor (VNN), Pixel Nearest
Neightbor (PNN) and Distance Weighted (DW)
interpolation algorithms. More elaborated algo-
rithms methods are based on radial basis func-
tions, such as spline interpolation functions
[9], or statistical Bayesian model with Rayleigh
distribution [10], but they are not suited for
isotropic volume reconstruction (voxels).

4.1 Existing algorithms
VNN is the most intuitive method. It traverses
each voxels, finds its nearest pixel by com-
puting the shortest distance between the voxel
and the sampled US images and inserts the
nearest pixel value to the voxel [11]. Although
this algorithms can preserve the most original
texture, ultrasonic echo with speckle noise, it
also trends to generate large artifacts when the
minimum distance to pixel becomes large.

PNN interpolation method is the most pop-
ular reconstruction algorithm, which traverses
on each pixel in the US images and assigns the
pixel value to the nearest voxel. The algorithm
is done in two stages :
• Bin-filling: In the bin-filling stage each

pixel is traversed and its pixel value is
assigned to its nearest voxel. For a given
voxel, multiple pixel contributions are gen-
erally handled by averaging pixel intensi-
ties.

• Hole-filling: In the hole-filling stage, the
algorithm traverses on each voxel and fills

each empty voxels by local neighborhood
averaging. Most hole filling algorithms de-
pend on the interpolation gaps, and there
can still be few holes if the distance among
sampled US images is greater than the
interpolation radius.

With the PNN method, obvious artefacts can be
observed on the boundaries between the highly
detailed bin-filled regions and the smoothed
hole-filling regions.

Similar to the VNN interpolation method,
DW interpolation proceeds voxel by voxel but
instead of using the nearest pixel, each voxel
value is assigned with a weighted average
of pixels situated nearby. The parameters to
choose are the weighting function, and the size
and shape of the neighborhood. The simplest
approach employs a spherical neighborhood.
All the pixels in the sphere are weighted by
the inverse distance to the voxel and are then
averaged. If the radius is too large, the recon-
structed volume will be highly smoothed.

For the interpolation stage (hole-filling), we
can use the Fast Marching Method (FMM), pro-
posed by T. Wen et al. [1]. The proposed march-
ing process ensures that the direction of infor-
mation propagation is the normal direction of
the evolving boundary, improving edge preser-
vation in the hole-filled areas. Fig.11 shows
an example of reconstructed slice generated by
those algorithms.

According to T. Wen et al. [1] typical execu-
tion time for a 421 × 425 × 131 grid and 138
images is 8849s for VNN, 94s for PNN, 15523s
for DW, and 134s for FMM. We observe that it is
highly time demanding for the VNN and con-
ventional DW interpolation algorithm to find
the shortest distance for each voxel among hun-

(a) VNN (b) PNN (c) DW (d) FMM

Fig. 11. Volume reconstruction methods comparison. Example of reconstructed slices extracted
from [1].



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 11

dreds of sampled US images. Several hours are
needed to complete the reconstruction. Such
expensive computation time is usually un-
bearable in most clinical applications. In our
worst case, the grid is approximately 180 times
bigger, and we have 27 times more images.
Thus, only PNN and FMM are good candidates
for further GPGPU optimisations.

5 ADAPTING PNN TO CUDA
PNN was the simplest algorithm and thus was
chosen in first place. In the bin-filling stage
each pixel is traversed and its pixel value is
assigned to its nearest voxel. For a given voxel,
multiple pixel contributions are handled by
averaging pixel intensities. In the hole-filling
stage, the algorithm traverses on each voxel
and fills each empty voxels by local neighbor-
hood averaging. The pattern chosen here is a
sphere with Rk interpolation radius (in voxels).

Fig. 12. A spherical voxel neighborhood with
Rk = 9.

5.1 Quick introduction to CUDA

In CUDA, the CPU is called host and the GPUs
are called devices. Each of these devices can ex-
ecute functions that are written in a SIMD man-
ner, called kernels. A kernel is executed by an
array of threads, all threads run the same code
at the same time, and each thread has an ID
that it uses to compute memory addresses and
make control decisions. Kernel launches a grid
of thread blocks, threads within a same block

can cooperate and synchronize, and threads in
different blocks cannot. Each device is free to
schedule thread blocks on any multiprocessor
but only one kernel can execute on a device
at one time. All kernel launches are asyn-
chronous, control returns to host (CPU) imme-
diately and kernel executes after all previous
CUDA calls have completed. Synchronization
with devices can be forced by calling the special
CUDA function cudaThreadSynchronize()
which blocks the execution flow until all pre-
vious CUDA calls complete. Synchronization
within a thread block is achieved through an-
other function, __syncthreads() and gener-
ates a barrier synchronization instruction, no
thread can pass this barrier until all threads in
the block reach it. This function is only allowed
in conditional code if the conditional is uniform
across the entire thread block or it will result
in a deadlock. CUDA provides some atomic
functions, 32-bit words atomic operations in
global memory for compute capability 1.1 and
higher, and 32 and 64-bit words for compute
capability 1.2 and higher, including associative
operations like addition, increment, maximum,
logical bitwise operations, exchange and com-
pare and swap (CAS). Global memory is large
(usually 512MB to 2GB), has high latency and
is not cached, but it is accessible by all threads.
Shared memory is stored in on-chip shared
memory which has very low latency and is
accessible by all threads in the same thread
block. It has the lifetime of a thread block.
Scalars and built-in vector types are stored in
registers. What does not fit in registers spills to
local memory.

The main problem when adapting an algo-
rithm to GPGPU is memory and thread con-
currency.

5.2 Device memory management

We already solved the problem of the GPU
memory size by splitting the grid into subgrids
by a certain ratio, but doing so raises other
problems. Memory transfers are expensive, es-
pecially when the kernel workload is low. In
fact, transfers between the host and device are
the slowest link of data movement involved
in GPU computing. Sending data from host



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 12

Fig. 13. Example of two streams concurrent execution. Kernel execution and memory transfers are
done simultaneously on different streams. On GPUn, two kernels are executing in parallel on the
same device.

to device or from device to host is limited
by the memory link (8GB/s on PCIe x16
Gen2) and the GPU memory clock rate (usu-
ally 6GB/s peak bandwidth on regular Nvidia
GPUs). Higher bandwidth is achieved between
the host and the device only when using large
chunk of pinned (page-locked) memory. The
thing you need to know is that data transfers
between the host and device can sometimes
be overlapped with kernel execution and other
data transfers. This can be done by using CUDA
streams.

A stream is a sequence of operations that ex-
ecute in issue-order on the GPU. It allows to go
beyond multi-threaded parallelism, giving the
ability to perform multiple CUDA operations si-
multaneously (kernels and memory transfers).
For example, the Fermi architecture (compute
capability 2.0+) can simultaneously support up
to 16 CUDA kernels per GPU, 2 memory trans-
fers (one to the device and one to the host) and
computations on the CPU. CUDA operations in
different streams may run concurrently, and
may be interleaved. Fig.13 shows an example
of concurrent device execution on two streams.

5.3 Bin-filling
In order to compute an average on a SIMD
architecture, we need at least an array to sum
the pixel contributions for each voxel and an ar-
ray counting the per voxel pixel contributions.

We call these arrays the mean subgrid and the
hit subgrid. If we want to apply our stream
strategy, we need an additional array which
stores the last computed result. We simply
name it the voxel subgrid. In addition to these
arrays, we need memory for the images and
transformations. Fig.14 shows memory blocks
on host and device GPUi.

Fig. 14. Memory layout for the PNN bin-filling.
Memory transfers are represented with white
arrows.



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 13

Appendix A shows the whole host side vol-
ume reconstruction process, including memory
allocations and memory transfers. Algorithm 3
and 4 shows the bin-filling CUDA implementa-
tion.

We use one thread per pixel with 32 × 32
thread-blocks. That means that our images are
processed in 32 × 32 blocks on each multipro-
cessor, executing 1024 threads at once. Mem-
ory transactions are close to optimal as each
warp (32 threads) will request 32 bytes (32
unsigned pixel values) of contiguous memory
aligned on a 32 byte address, each represent-
ing a line of our 32x32 sub-image. We can
get four times more performance for images
memory transactions by processing 4 pixels
per thread and fetching 128 bytes (32 integers,
4 pixels per integer) representing 64x64 sub-
images at once, maximizing device memory
throughput. Because images are 64× 1296 and
1296 mod 32 = 16, we need to check whether
the current pixel array position is not out of
bound in the kernel.

Accessing forbidden memory results in un-
defined behaviours on the device, and can
corrupt data or crash the kernel. Interest-
ing tools to detect such bad accesses are
cuda-memcheck and cuda-gdb. Another in-

teresting tool is the Nvidia Visual Profiler
nvvp, which allows to visualize the execution
of streams on multiple devices.

After having computed pixel and voxel po-
sitions, we need to check whether the current
pixel contributes to the current computed sub-
grid. If so, because multiple threads can write
to the same voxel location at the same time,
hit and mean grid modifications must be done
atomically.

Finally, another dedicated kernel (algorithm
4) computes the real mean, by dividing the
mean subgrid by the hit subgrid and storing
the result in the voxel subgrid which is then
moved back to the host.

If the hit subgrid voxel value is 0, that means
that the voxel is a hole and the resulting value
is in voxel subgrid is set to 0. This kernel
can only be executed when the last memory
transfer to the host has finished, but during
bin-filling kernel computation, the other stream
might already have finished to copy back the
last voxel subgrid to the host.

Fig.15a shows a single reconstructed slice
after the bin-filling stage. Fig.15b shows a ex-
tracted 2D slice of a reconstructed volume from
multiple images after bin-filling. Fig.15e shows
the source bin-filled volume.

Data: Thread Id, grid and subgrid size,
subgrid Id, voxel size, images,
transformations, target hit and mean
subgrid.

Result: Updated hit and mean subgrid.

Compute current pixel image position;
if Pixel position out of range then

return;
end
Apply transformation to current pixel;
Compute voxel position in grid;
if Current voxel not in current subgrid then

return;
end
Compute voxel position in subgrid;
Atomically increment current voxel hit
subgrid;
Atomically add current voxel intensity to
mean subgrid;
Algorithm 3: Bin-filling kernel (step 1).



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 14

(a) Exaggerated grid splitting of a sin-
gle reconstructed slice

(b) An extracted 2D slice from recon-
structed 3D volume after the bin-filling
stage.

(c) Reconstructed volume in its grid. Note
the memory waste when taking the sur-
rounding power of two voxel grid.

(d) Top view of the same reconstructed
volume as (c).

(e) Reconstructed 3D isotropic volume.
No position filtering.

(f) Thresholded volume. The white voxels
represent the cartilage interface.

Fig. 15. Results after bin-filling stage



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 15

5.4 Hole-filling

This section describes the hole-filling method.
The method is ready but real CUDA implemen-
tation has not be done yet. In order to compute
hole-filling, we need a source subgrid, the hole-
filled subgrid, and a destination subgrid, the
bin-filled subgrid. Fig.16 shows the new mem-
ory layout.

Fig. 16. Memory layout for the PNN hole-filling.
Memory transfers are represented with white
arrows.

Because we do not need image data and
three grids of various size anymore, we gained
much space on the device memory. Thus we
can resplit the whole host grid in bigger sub-
grids to improve hole filling performance. The
chosen thread blocks are 1024 consecutive vox-
els, resulting in one thread per subgrid voxel.
As we are using local neighborhood averag-
ing in a spherical shape, the implementation
of hole filling is pretty straightforward. Algo-
rithm 5 shows a simple hole-filling kernel.

Data: Thread Id, Rk, source bin-filled
subgrid and destination hole-filled
subgrid.

Result: Updated hole-filled subgrid.

Compute current voxel position in subgrid;
if voxel is not a hole then

return;
end
if voxel to close to one subgrid border then

//This will be handled on host side
return;

end
k ← 0; s← 0;
for each voxel i in spherical neighborhood of
radius Rk do

if voxel i is not a hole then
s← s+ voxel i intensity;
k ← k + 1;

end
end
if k == 0 then

Hole filled voxel value ← 0;
else

Hole filled voxel value ← s/k
end
Algorithm 5: Simple hole-filling kernel.

The problem when splitting the grid is that
we can not reconstruct the voxel located near
the borders of the subgrid because neighbor-
hood information is lost. One solution is to
send a slightly bigger subgrid to the device

Data: Thread Id, source hit and mean
subgrid, target voxel subgrid.

Result: Updated voxel subgrid.

Compute current voxel position in subgrid;
if Voxel position out of range then

return;
end
if Current voxel hit grid value == 0 then

Target voxel intensity ← 0;
else

Target voxel intensity ←
mean intensity value;

end
Algorithm 4: Bin-filling kernel (step 2), com-
puting mean.



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 16

which includes this information. Another much
simpler solution is to compute hole-filling in
such areas directly on the host CPU, during
the execution of the kernels. The kernels will
still be in charge of most of the subgrid inner
volume, which is where the heavy workload is.

To improve this hole-filling we can take ad-
vantage of shared memory. Here each voxel
will try to access to all its neighbors within
a given range and these memory accesses are
strided resulting in too many memory transac-
tions. A simple way to fix this is to copy the per
warp (32 voxels) neighborhood in the shared
memory so that the high latency expensive
global memory accesses are done just once
and following accesses are done on the much
faster cached local memory (roughly 100 times
faster). But due to its small size (usually 64kB
per multiprocessor) it is not always possible to
store the whole thread block voxel neighbor-
hood in shared memory, especially when the
radius Rk is large. For such case we can attach
a 3D texture to the bin-filled source subgrid.
Cuda textures are read-only and memory space
is cached. Therefore, a texture fetch costs one
device memory read only on a cache miss, oth-
erwise, it just costs one read from the texture
cache. The texture cache is optimized for 2D
or 3D spatial locality, so threads of the same
warp that read texture addresses that are close
together will achieve best performance, and
that is exactly our scenario.

5.5 Results

The whole volume reconstruction process has
been developed in C++. For the CUDA part, we
used the CUDA Toolkit 5.5. A basic Graph-
ical User Interface (GUI) has been developed
to visualize the reconstructed volume with dif-
ferent thresholds and to easily generate 2D
slices. This GUI was made with Qt4 and the
QGLviewer, and the voxel renderer was done
with OpenGL with the help of CUDA for the
heavy computations (millions of voxels).

Fig.15c and 15d shows a reconstructed
isotropic volume. Fig.15f shows the cartilage
interface.

5.5.1 Execution times
Table 2 shows typical execution times for var-
ious datasets. The hole-filling step has not
been implemented yet. The PNN bin-filling
step is done in less than 2 seconds, even for
massive data amount (3770 images and 2048×
1024× 2048 voxel grid) overtaking T. Wen et al.
[1] 94s result even if we have a 180 times bigger
grid and 27 times more input data (pixels).
For the moment hole filling computation time
has not been included in the results so the
comparison in not fair. A proper CPU imple-
mentation should be implemented in C++ to
obtain a proper comparison between the two
methods and to validate the proposed parallel
volume reconstruction method.

Because the two GTX670 graphic cards have
huge amounts of memory (4GB each), we can
not really say whether the stream strategy
adopted pays off or not because the grid is
only split for a very large grid (2048 × 1024 ×
2048 here). The other configuration including
a dual GPU card (GTX590) has less memory
(2 × 1.5GB). This dataset should show if the
stream strategy counterbalances huge memory
transfers entailed by grid splitting, because the
reduced memory space involves much more
grid splitting. Unfortunately, these results are
not available yet, but grid splitting has been
tested and is fully working on this machine.



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 17

TABLE 2
Executions times on two GTX670 with 4GB embed memory each and 16GB CPU memory

WG HG LH δv NSG Data Loading Bounding Box Bin-Filling Hole-Filling Total
(µm) (ms) (ms) (ms) (ms) (ms)

Dataset 1 : Single US image

64 32 8 500 1 0 0 0 - -

128 128 16 200 1 0 0 0 - -

256 256 32 100 1 0 0 0 - -

Dataset 2 : Half tibia plateau (1610 images)

128 256 128 500 1 290 0 70 - -

256 512 512 200 1 280 0 100 - -

512 1024 1024 100 1 290 0 180 - -

Dataset 3 : Full femur neck (3770 images)

256 128 256 500 1 1220 0 140 - -

1024 512 1024 200 1 1240 0 260 - -

2048 1024 2048 100 8 1240 0 480 - -

6 CONCLUSION

In this paper, we showed that reconstructing a
isotropic volume from 2D localized ultrasound
images was possible on GPU. This was done
by adapting an existing volume reconstruction
algorithm knows as Pixel Nearest Neighbor
(PNN) and using the massive parallelism pro-
vided by our every day GPUs. This method
offers huge speedup to volume reconstruc-
tion, even when not fully optimized, allowing
to reduce drastically reconstruction time that
would be otherwise unbearable for such clini-
cal applications. Nearly all desktop computers
and professional laptops include a dedicated
Graphic Processing Unit, which means that all
this speedup comes for free, and that there
is no extra cost. However, PNN is not the
best algorithm for such isotropic volume recon-
struction. Adapting the Fast Marching Method
proposed by T. Wen et al. [1] to CUDA is the
next step to get rapid and more precise volume
reconstruction.

ACKNOWLEDGMENTS

I would like to thank the TIMC-IMAG lab-
oratory for having hosted me for 4 months,
especially the GMCAO team members that
were always here to help when there were
any problems and for the good mood. Special
thanks goes to M. Chabanas for having taken

the time and energy throughout the project by
providing precious feedbacks and for having
introduced me to the TIMC-IMAG laboratory.

REFERENCES

[1] T. Wen, Q. Zhu, W. Qin, L. Li, F. Yang, Y. Xie, and
J. Gu, “An accurate and effective fmm-based approach for
freehand 3d ultrasound reconstruction,” Biomedical Signal
Processing and Control, vol. 8, no. 6, pp. 645–656, 2013.

[2] M. L., L. T, L. F, and C. DL., “A review of calibration tech-
niques for freehand 3-d ultrasound systems.” Ultrasound
Medicine and Biology, vol. 31, no. 4, p. 22, apr 2005.

[3] A. Babakhani, Z. Du, L. Sun, M. A. Fereidoon, and K. M.
Reza, “3d reconstruction of ultrasonic images based on
matlab/simulink,” Pakistan Journal of Biological Sciences,
vol. 9, no. 15, pp. 2818–2822, 2006.

[4] R. S. José-Estépar, M. Martı́n-Fernández, P. Caballero-
Martı́nez, C. Alberola-Lópezemail, and J. Ruiz-Alzola, “A
theoretical framework to three-dimensional ultrasound
reconstruction from irregularly sampled data,” Ultrasound
in Medicine and Biology, vol. 29, no. 2, pp. 255–269, feb
2003.

[5] T. Qiu, T. Wen, W. Qin, J. Gu, and L. Wang, “Freehand
3d ultrasound reconstruction for image-guided surgery,”
Bioelectronics and Bioinformatics (ISBB), pp. 147–150, 11
2011.

[6] M. Hafizah, T. Kok, and E. Supriyanto, “Development
of 3d image reconstruction based on untracked 2d fetal
phantom ultrasound images using vtk,” WSEAS Transac-
tions on Signal Processing, vol. 6, no. 4, pp. 145–154, 2010.

[7] W. Huang and Y. Zheng, “Mmse reconstruction for 3d
freehand ultrasound imaging,” International Journal of
Biomedical Imaging, no. 2, p. 8, jan 2008.

[8] R. Rohling, A. Geel, and L. Berman, “A comparison
of freehand three-dimensional ultrasound reconstruction
techniques,” Medical Image Analysis, vol. 3, no. 4, pp. 339–
359, dec 1999.



INTRODUCTION TO LABORATORY RESEARCH, REPORT, VERSION. 2, MAY 2014 18

[9] R. Rohling, A. Gee, L. Berman, and G. Treece, “Radial
basis function interpolation for freehand 3d ultrasound,”
Information Processing in Medical Imaging, vol. 1613, pp.
478–483, 1999.

[10] J. M. Sanches and J. S. Marques, “A rayleigh re-
construction/interpolation algorithm for 3d ultrasounda
rayleigh reconstruction/interpolation algorithm for 3d
ultrasound,” Pattern Recognition Letters, vol. 21, no. 10, pp.
917–926, sep 2000.

[11] R. W. Prager, A. Gee, and L. Berman, “Stradx: real-time ac-
quisition and visualization of freehand three-dimensional
ultrasound,” Medical Image Analysis, vol. 3, no. 2, pp. 129–
140, jun 1999.

APPENDIX A
ADAPTED PNN ALGORITHM PSEUDO
CODE

Data: The SoA filtered transformations
and the cropped, smoothed and
converted images.

Result: The reconstructed 3D isotropic
volume

//Bounding box and grid creation
Compute bounding box with algorithm 1;
Choose voxel size δv and compute original
grid size;
Compute upper power of two grid size
with (5),(6) and (7);
Allocate new grid on host in pinned
memory;
//Split grid
for each GPU i available do

Create two streams si1 and si2;
Fetch available device memory mi;
Compute min grid split ratio ri with
mi;

end
Split grid with max(ri) with algorithm 2;
//Allocate data and send initial data to
devices
for each GPU i do

Allocate voxel, mean and hit subgrid
on device i;
Allocate image array and
transformation arrays on device i;
Send images and transformations from
host to device i on stream si1;

end
Free CPU image and transformation data;
Synchronize devices with host;

//Compute hole-filling
i← 0;j ← 0;
Ngpu ← number of GPUs;
for each subgrid do

Compute bin-filling kernel 1 on device
i on stream sj mod 2

i ;
Add memory transfer barrier on
stream sj mod 2

i ;
Compute bin-filling kernel 2 on device
i on stream sj mod 2

i ;
Copy back computed subgrid to host
from device i on stream sj mod 2

i ;
i← (i+ 1) mod Ngpu;
j ← j + 1;

end
Synchronize devices with host;
//Free memory and resplit grid
for each GPU i do

Free grids, image and transformations
arrays on device i;
Fetch available device memory mi’;
Compute new min grid split ratio ri’
with mi’;

end
Split grid with max(ri);
with algorithm 2
for each GPU i do

Allocate 2 voxel subgrids;
end
//Compute bin-filling
i← 0;j ← 0;
for each subgrid do

Copy to device i the bin-filled subgrid
j on stream sj mod 2

i ;
Compute hole-filling kernel on device i
on stream sj mod 2

i ;
Copy back hole-filled subgrid j to host
from device i on stream sj mod 2

i ;
i← (i+ 1) mod Ngpu;
j ← j + 1;

end
for each subgrid edge do

Compute hole-filling on CPU;
end
Synchronize devices with host;
//Display 2D slices, 3D voxel grid or do
further processing

Algorithm 6: Reconstruction algorithm
pseudo code


